Numerous Phytophthora and Pythium disease outbreaks have occurred in Europe following inadvertent introduction of contaminated ornamental plants. Detection and identification of pathogens are crucial to reduce risks and improve plant biosecurity in Europe and globally. Oomycete diversity present in roots and compost was determined in 99 hardy woody plants bought from nurseries, retailers and internet sellers, using both isolations and molecular analyses. Oomycete DNA was quantified using real-time PCR of environmental DNA from the plants using three loci: ITS, trnM-trnP-trnM and atp9-nad9. At least one oomycete species was isolated from 89.9% of plants using classical techniques. In total, 10 Phytophthora spp., 17 Pythium spp. and 5 Phytopythium spp. were isolated. Oomycetes were isolated from 86% of asymptomatic plants, but real-time PCR demonstrated that oomycetes were associated with all plants tested. More oomycete DNA occurred in composts in comparison with roots and filters from baiting water (a mean of 7.91 ng g−1, 6.55 × 10−1 ng g−1 and 5.62 × 10−1 ng g−1 of oomycete DNA detected in compost with ITS, trnM and atp9 probes, respectively); the ITS probe detected the highest quantities of oomycete DNA. No significant differences were found in quantities of oomycete DNA detected using real-time PCR in plants purchased online or from traditional retailers.
Live plants, particularly when accompanied by soil or potting substrates, are considered the main pathway for international spread of plant pathogens. Modern, rapid shipping technologies for international plant trade increase the probability of plant pathogen survival during transport and the subsequent chances of disease outbreaks in new locations. The survival of two model pathogens, an Oomycete, Phytophthora cinnamomi, and a filamentous fungus, Fusarium verticillioides, was studied in two different commercial potting substrates (peat and peat‐free) under glasshouse conditions in the absence of a plant host. Survival rates were analysed at 2, 7, 12 and 17 months after substrate inoculation. Fusarium verticillioides had the longest survival rate, and was still present at 17 months. In contrast, P. cinnamomi survived up to 7 months but was not recovered after 12 or 17 months. There was no significant difference in the number of colony‐forming units (CFUs) of either pathogen in the two substrates, except at 2 months, when higher numbers were recovered from peat substrates.
During a survey of oomycetes in ornamental plants carried out at the University of Aberdeen in 2014–2015, Pythium kashmirense was isolated from a specimen of Viburnum plicatum ‘Lanarth’, the first report of this oomycete in the UK (and in Europe). Pathogenicity of a Py. kashmirense isolate was examined using a range of plant species. Inoculations were carried out under controlled conditions in the absence of other Pythium and Phytophthora species, on Glycine max (soya bean), Phaseolus vulgaris (common bean), Lupinus angustifolius (blue lupin), Cucumis sativa (cucumber) and Viburnum opulus. The majority of inoculations caused pre-emergence damping-off, as well as seed rot and root rot. In the in vitro assays, germination rates (%) of soya bean and blue lupin seeds were less than 50%; in the in vivo inoculations on plants, over 50% of soya bean, blue lupin and common bean plants died; in contrast, cucumber plants showed lower susceptibility in pathogenicity tests, with an approximately 80% germination rate in in vitro tests, and 25% dead plants in the in planta inoculations. Inoculations carried out on root systems of Viburnum opulus caused severe necrosis and root rot. Little research was previously conducted on pathogenicity of Py. kashmirense and its relationship with losses in crop yield and quality. The present study showed varying virulence on the different plant species tested after inoculation with Py. kashmirense. Despite the lack of clear host specialization, infection by Py. kashmirense decreased seedling survival and health of plants in a range of important agricultural and ornamental plant species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.