The aim of this study was to investigate the effect of whey protein isolate (WPI) gel microentrapment on the viability of Lactobacillus rhamnosus R011 during the production and storage of biscuits, frozen cranberry juice, and vegetable juice. Viability of microentrapped (ME) cells was compared to free cells freeze-dried in a milk-based protective solution as well as in a WPI-based solution (ungelled). During the production of biscuits and their storage for 2 wk at 23 degrees C, the highest stability was obtained with the cells ME in WPI gel particles. However, free cells prepared in the milk-based matrix were those that maintained the highest viability during storage of vegetable juice as well as during freezing and storage of cranberry juice. The culture prepared in a WPI-based solution had the highest drops in viable counts following the heating process of biscuits as well as during storage of vegetable juice and freezing and storage of cranberry juice. Although the WPI-based solution was not efficient in protecting free cells, it is concluded that the process of microentrapment in WPI can help in protecting the freeze-dried cells against subsequent acidic and alkaline pH conditions as well as heating and freezing of food products.
The production of pharmaceutical proteins in plants has made much progress in recent years with the development of transient expression systems, transplastomic technology and humanizing glycosylation patterns in plants. However, the first therapeutic proteins approved for administration to humans and animals were made in plant cell suspensions for reasons of containment, rapid scale-up and lack of toxic contaminants. In this study, we have investigated the production of human interleukin-10 (IL-10) in tobacco BY-2 cell suspension and evaluated the effect of an elastin-like polypeptide tag (ELP) and a green fluorescent protein (GFP) tag on IL-10 accumulation. We report the highest accumulation levels of hIL-10 obtained with any stable plant expression system using the ELP fusion strategy. Although IL-10-ELP has cytokine activity, its activity is reduced compared to unfused IL-10, likely caused by interference of ELP with folding of IL-10. Green fluorescent protein has no effect on IL-10 accumulation, but examining the trafficking of IL-10-GFP over the cell culture cycle revealed fluorescence in the vacuole during the stationary phase of the culture growth cycle. Analysis of isolated vacuoles indicated that GFP alone is found in vacuoles, while the full-size fusion remains in the whole-cell extract. This indicates that GFP is cleaved off prior to its trafficking to the vacuole. On the other hand, IL-10-GFP-ELP remains mostly in the ER and accumulates to high levels. Protein bodies were observed at the end of the culture cycle and are thought to arise as a consequence of high levels of accumulation in the ER.
SummaryApolipoprotein AI Milano (ApoAI Milano ) was expressed as a fusion protein in transgenic safflower seeds. High levels of expression corresponding to 7 g of ApoAI Milano per kilogram of seed have been identified in a line selected for commercialization.The ApoAI Milano fusion protein was extracted from seed using an oilbody-based process and matured in vitro prior to final purification. This yielded a Des-1,2-Apo-AI Milano product which was confirmed by biochemical characterization including immunoreactivity against ApoAI antibodies, isoelectric point, N-terminal sequencing and electrospray mass spectrometry. Purified Des-1,2-ApoAI Milano readily associated with dimyristoylphosphatidylcholine in clearance assays comparable to Human Apo-AI. Its biological activity was assessed by cholesterol efflux assays using Des-1,2-Apo-AI Milano :1-palmitoyl-2-oleoyl phosphatidylcholine complexes in vitro and in vivo. This study has established that high levels of biologically functional ApoAI Milano can be produced using a plant-based expression system.
Entrapping probiotic bacteria in gels with ionic cross-linking is typically achieved with polysaccharides (alginate, pectin, carraghenan). In this study, whey proteins were used for this purpose by carrying out the Ca(2+)-induced gelation of pre-heated whey protein isolate (WPI). A Lactobacillus rhamnosus cell suspension was added in a denatured WPI solution in a 30 : 70 volume ratio. Gelation was carried out by extrusion of the cell suspension in a CaCl(2) solution. Beads of approximately 3 mm diameter were formed. The population in the beads was 8.0 x 10(8) cells g(-1). Entrapment efficiency in gel beads was 96%, with a survival level of 23%. Scanning electron microscopy of beads before freeze-drying showed a tight protein network containing encapsulated Lb. rhamnosus cells homogeneously distributed throughout the matrix. The survival to freeze-drying of the bead-entrapped cells was 41%. Viability of microentrapped cells in a dynamic gastro-intestinal (GI) model was studied and the results were compared to free cells freeze-dried in a milk-based cryoprotective solution, as well as in a pre-denatured WPI solution. Results showed that protein gelation provided protection against acidic conditions in the stomach after 90 min, as well as against bile after 30, 60 and 90 min in the duodenum. Moreover, the milk-based cryoprotective solution was equally effective after 90 min in the duodenum. It is concluded that the gelation of whey proteins induced by Ca(2+) ions can protect the cells against adverse conditions of the GI system. However, certain stages in the entrapment process, particularly extrusion in the solution of CaCl(2), still need to be optimized in order to reduce the mortality of the cells during gelation.
SummarySurveillance is an important component of an overall strategy to address antimicrobial resistant bacteria in food animals and the food chain. The poultry market has many points of entry into the Canadian food chain, and some production practices are un- (1,022/1,025), and 47% (483/1,022) of positive E. coli isolates were resistant to one or more of the 14 antimicrobials. Furthermore, as compared to results reported for the CIPARS commercial flocks, E. coli isolates from smallholder flocks had significantly lower resistance prevalence to six of 14 individual antimicrobials. Recovery of E. coli did not differ between federally inspected and provincially inspected flocks. Salmonella prevalence at the bird level in smallholder flocks was 0.3% (3/1,025), significantly lower (p ≪ 0.0001, 95% CI 0.080%-0.86%) than federally inspected commercial flocks. The overall differences found between the commercial and smallholder flocks may be explained by differences in poultry husbandry practices and hatchery sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.