A promising method for efficiently querying RDF data consists of translating SPARQL queries into efficient RDBMS-style operations. However, answering SPARQL queries requires handling RDF reasoning, which must be implemented outside the relational engines that do not support it.We introduce the database (DB) fragment of RDF, going beyond the expressive power of previously studied RDF fragments. We devise novel sound and complete techniques for answering Basic Graph Pattern (BGP) queries within the DB fragment of RDF, exploring the two established approaches for handling RDF semantics, namely reformulation and saturation. In particular, we focus on handling database updates within each approach and propose a method for incrementally maintaining the saturation; updates raise specific difficulties due to the rich RDF semantics. Our techniques are designed to be deployed on top of any RDBMS(-style) engine, and we experimentally study their performance trade-offs.
RDF is the leading data model for the Semantic Web, and dedicated query languages such as SPARQL 1.1, featuring in particular aggregation, allow extracting information from RDF graphs. A framework for analytical processing of RDF data was introduced in [1], where analytical schemas and analytical queries (cubes) are fully redesigned for heterogeneous, semantic-rich RDF graphs. In this novel analytical setting, we consider the following optimization problem: how to reuse the materialized result of a given RDF analytical query (cube) in order to compute the answer to another cube. We provide view-based rewriting algorithms for these cube transformations, and demonstrate experimentally their practical interest.
The development of Semantic Web (RDF) brings new requirements for data analytics tools and methods, going beyond querying to semantics-rich analytics through warehouse-style tools. In this work, we fully redesign, from the bottom up, core data analytics concepts and tools in the context of RDF data, leading to the first complete formal framework for warehouse-style RDF analytics. Notably, we define i) analytical schemas tailored to heterogeneous, semantics-rich RDF graph, ii) analytical queries which (beyond relational cubes) allow flexible querying of the data and the schema as well as powerful aggregation and iii) OLAP-style operations. Experiments on a fully-implemented platform demonstrate the practical interest of our approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.