The novelty of this study consists in the formulation and characterization of three experimental dental composites (PM, P14M, P2S) for cervical dental lesion restoration compared to the commercial composites Enamel plus HRi® - En (Micerium S.p.A, Avengo, Ge, Italy), G-ænial Anterior® - Ge, (GC Europe N.V., Leuven, Belgium), Charisma® - Ch (Heraeus Kulzer, Berkshire, UK). The physio-chemical properties were studied, like the degree of conversion and the residual monomers in cured samples using FTIR-ATR (attenuated total reflectance) and HPLC-UV (ultraviolet detection), as well as the evaluation of the mechanical properties of the materials. The null hypothesis was that there would be no differences between experimental and commercial resin composites regarding the evaluated parameters. Statistical analysis revealed that water and saliva storage induced significant modifications of all mechanical parameters after three months for all tested materials, except for a few comparisons for each type of material. Storage medium seemed not to alter the values of mechanical parameters in comparison with the initial ones for: diametral tensile strength (DTS-saliva for Ge and PM, compressive strength (CS)-water for Ch, DTS-water and Young’s modulus YM-saliva for P14M and YM-water/ saliva for P2S (p > 0.05). Two of the experimental materials showed less than 1% residual monomers, which sustains good polymerization efficiency. Experimental resin composites have good mechanical properties, which makes them recommendable for the successful use in load-bearing surfaces of posterior teeth.
Selenium (Se) is an essential element for human and animal health. Biogenic selenium nanoparticles (SeNPs) by microorganism possess unique physical and chemical properties and biological activities compared with inorganic Se and organic Se. The study was conducted to investigate the mainly biological activities of SeNPs by Lactobacillus casei ATCC 393 (L. casei 393). The results showed that L. casei 393 transformed sodium selenite to red SeNPs with the size of 50–80 nm, and accumulated them intracellularly. L. casei 393-SeNPs promoted the growth and proliferation of porcine intestinal epithelial cells (IPEC-J2), human colonic epithelial cells (NCM460), and human acute monocytic leukemia cell (THP-1)-derived macrophagocyte. L. casei 393-SeNPs significantly inhibited the growth of human liver tumor cell line-HepG2, and alleviated diquat-induced IPEC-J2 oxidative damage. Moreover, in vivo and in vitro experimental results showed that administration with L. casei 393-SeNPs protected against Enterotoxigenic Escherichia coli K88 (ETEC K88)-caused intestinal barrier dysfunction. ETEC K88 infection-associated oxidative stress (glutathione peroxidase activity, total superoxide dismutase activity, total antioxidant capacity, and malondialdehyde) was ameliorated in L. casei 393-SeNPs-treated mice. These findings suggest that L. casei 393-SeNPs with no cytotoxicity play a key role in maintaining intestinal epithelial integrity and intestinal microflora balance in response to oxidative stress and infection.
The aim of this study was to analyze whether the mesenchymal stromal cells (MSCs) isolated from palatal tissue grafts harvested in order to cover gingival recessions have the basic characteristics of stem cells. The palatal tissue cells were processed using a special culture medium that stimulated the development of only undifferentiated cellular lines. Cells at passage 4 were evaluated by flow cytometry to examine the expression of specific surface markers and were tested for multilineage differentiation capacity. These cells collected at passage 4 were also investigated for the capacity to cluster into embryoid body aggregates. Palatal MSCs displayed positive staining for the mesenchymal markers CD29, CD73, CD105, CD 49e, and CD44, but did not express hematopoietic markers CD34/45. The palatal MSCs successfully differentiated into osteogenic, adipogenic, and chondrogenic lineages. When seeded in special conditions, palatal MSCs propagated into unattached spheres resembling embryoid body aggregates consisting both of differentiated and undifferentiated cells as revealed at the ultrastructural evaluation. It is concluded that the isolated palatal MSCs fulfilled the basic criteria defining the stem cells. This new source of stem cells characterized here for the first time opens new perspectives on possible applications in basic research and in regenerative medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.