The relationship between auroral emissions in the polar ionosphere and the large-scale flow of current within the Earth's magnetosphere has yet to be comprehensively established. Under northward interplanetary magnetic field (IMF) conditions, magnetic reconnection occurs at the high-latitude magnetopause, exciting two reverse lobe convection cells in the dayside polar ionosphere and allowing ingress of solar wind plasma to form an auroral "cusp spot" by direct impact on the atmosphere. It has been hypothesized that a second class of NBZ auroras, High-latitude Dayside Aurora, are produced by upward field-aligned currents associated with lobe convection. Here we present data from the Special Sensor Ultraviolet Spectrographic Imager instrument and from the Active Magnetosphere and Planetary Electrodynamics Response Experiment, from January 2010 to September 2013, in a large statistical study. We reveal a northward IMF auroral phenomenon that is located adjacent to the cusp spot and that is colocated with a region of upward electrical current in the clockwise-rotating lobe cell. The emission only occurs in the sunlit summer hemisphere, demonstrating the influence of the conductance of the ionosphere on current closure. In addition, fast solar wind speed is required for this emission to be bright. The results show that dayside auroral emission is produced by IMF-magnetosphere electrodynamic coupling, as well as by direct impact of the atmosphere by the solar wind, confirming the association of High-latitude Dayside Aurora with NBZ currents. Plain Language SummaryUnder certain incoming solar wind conditions, patches of aurora are sometimes found not in the main bright auroral oval but inside the normally otherwise dark polar cap region. These patches of auroral emissions are colocated with regions of upward flowing electrical current. We present a study of these emissions using nearly 3 years of data from both the North and South Hemispheres, combining simultaneous observations of the polar cap at ultraviolet wavelengths, and measurements of field-aligned currents. This builds on the previous work of other authors, who observed these auroral emissions in the Northern Hemisphere only. The upward current associated auroral emissions occur when the incoming interplanetary magnetic field is northward and are shown to only be observable in the summer hemisphere. This implies a dependence on the conductance of the ionosphere, via photoionization, on the appearance of these auroras.
We track a remarkably bright and persistent auroral cusp spot emission in the high‐latitude Northern Hemisphere polar cap, well inside the main auroral oval, for approximately 11 hr on 16 and 17 June 2012. The auroral emissions are presented in both the Lyman‐α and Lyman‐Birge‐Hopfield bands, as observed by the Special Sensor Ultraviolet Spectrographic Imager on board two of the Defense Meteorological Satellite Programme spacecraft, and supported by detections of precipitating particles by the same spacecraft. The auroral observations are accompanied by patterns of field aligned currents, obtained from the Active Magnetosphere and Planetary Electrodynamics Response Experiment, along with ionospheric convection patterns from the Super Dual Auroral Radar Network. These data provide unprecedented coverage of a cusp spot, unusually seen in both electron and proton aurora. The location and movement of the auroral emissions, current systems, and ionospheric convection patterns are extremely distorted under the northward to Y‐component‐dominated interplanetary magnetic field. The cusp spot emission region is associated with the sunward flow region of the ionosphere. Ion dispersion signatures are detected on traversal of the region of brightest proton auroral emissions. Proton‐excited Lyman‐α emissions are most evident following impulses of high solar wind density. The auroral emissions, field‐aligned current patterns, and ionospheric convection are consistent with a model of a compressed magnetosphere under strongly northward interplanetary magnetic field, following an impact of an Interplanetary Coronal Mass Ejection and associated magnetic cloud at the magnetopause, inducing high‐latitude lobe reconnection that progresses increasingly tailward during the presented interval.
Auroral Kilometric Radiation (AKR) is the strongest terrestrial radio emission, and emanates from the same electron acceleration regions from which particles precipitate into the ionosphere, exciting the aurorae and other phenomena. As such, AKR is a barometer for the state of solar wind ‐ magnetosphere ‐ ionosphere coupling. AKR is anisotropically beamed in a hollow cone from a source region generally found at nightside local times, meaning that a single source region cannot be viewed from all local times in the magnetosphere. In radio data such as dynamic spectra, AKR is frequently observed simultaneously to other radio emissions which can have a similar intensity and frequency range, making it difficult to automatically detect. Building on a previously published pipeline to extract AKR emissions from Wind/WAVES data, in this paper a novel automated AKR burst detection technique is presented and applied to Wind/WAVES data. Over a five year interval, about 5000 AKR bursts are detected with median burst length ranging from about 30 to 60 min. During detected burst windows, higher solar wind velocity is observed, and the interplanetary magnetic field clock angle is observed to tend toward BZ < 0, BY < 0, when compared with the entire statistical interval. Additionally, higher geomagnetic activity is observed during burst windows at polar, high and equatorial latitudes.
Auroral kilometric radiation (AKR) describes amplified radio emission from the Earth that is generated from relativistic, precipitating electrons along magnetic field lines in the auroral zone and resonates at the electron cyclotron frequency (Wu & Lee, 1979). The emission frequency of an AKR source is close to the local electron gyrofrequency, so that lower frequency AKR emanates from a higher altitude along a field line. AKR is emitted between 30 800 E kHz and has been observed by many Earth-orbiting spacecraft such as Polar, Geotail, and Cluster (e.g.,
Super Dual Auroral Radar Network (SuperDARN) ionospheric convection maps are a powerful tool for the study of solar wind-magnetosphere-ionosphere interactions. SuperDARN data have high temporal (approximately minutes) and spatial (∼45 km) resolution, meaning that the convection can be mapped on fine time scales that show more detail than the large-scale changes in the pattern. The Heppner-Maynard boundary (HMB) defines the low-latitude limit of the convection region, and its identification is an essential component of the standard SuperDARN convection mapping technique. However, the estimation of the latitude of this boundary is dependent on ionospheric scatter availability. Consequentially it is susceptible to nonphysical variations as areas of scatter in different latitude and local time regions appear and disappear, often due to changing propagation conditions. In this paper, the HMB is compared to an independent field-aligned current data set from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE). A linear trend is found between the HMB and the boundary between the AMPERE Region 1 and Region 2 field-aligned currents in the Northern Hemisphere, at both solar minimum and solar maximum. The use of this trend and the AMPERE current data set to predict the latitude position of the HMB is found to improve the interpretation of the SuperDARN measurements in convection mapping.Both the convection and FAC patterns are a barometer for the state of the coupled magnetosphereionosphere system. Like the convection pattern, the FAC pattern will expand and contract in response to
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.