Main conclusion This review analyzes the advances in understanding the natural signaling pathways and environmental factors regulating stilbene biosynthesis. We also discuss the studies reporting on stilbene content and repertoire in plants.Stilbenes, including the most-studied stilbene resveratrol, are a family of phenolic plant secondary metabolites that have been the subject of intensive research due to their valuable pharmaceutical effects and contribution to plant disease resistance. Understanding the natural mechanisms regulating stilbene biosynthesis in plants could be useful for both the development of new plant protection strategies and for commercial stilbene production. In this review, we focus on the environmental factors and cell signaling pathways regulating stilbene biosynthesis in plants and make a comparison with the regulation of flavonoid biosynthesis. This review also analyzes the recent data on stilbene biosynthetic genes and summarizes the available studies reporting on both stilbene content and stilbene composition in different plant families.
Recent investigations documented that plants can uptake and process externally applied double-stranded RNAs (dsRNAs), hairpin RNAs (hpRNAs), and small interfering RNAs (siRNAs) designed to silence important genes of plant pathogenic viruses, fungi, or insects. The exogenously applied RNAs spread locally and systemically, move into the pathogens, and induce RNA interference-mediated plant pathogen resistance. Recent findings also provided examples of plant transgene and endogene post-transcriptional down-regulation by complementary dsRNAs or siRNAs applied onto the plant surfaces. Understanding the plant perception and processing of exogenous RNAs could result in the development of novel biotechnological approaches for crop protection. This review summarizes and discusses the emerging studies reporting on exogenous RNA applications for down-regulation of essential fungal and insect genes, targeting of plant viruses, or suppression of plant transgenes and endogenes for increased resistance and changed phenotypes. We also analyze the current understanding of dsRNA uptake mechanisms and dsRNA stability in plant environments.
Recent investigations show that exogenously applied small interfering RNAs (siRNA) and long double-stranded RNA (dsRNA) precursors can be taken up and translocated in plants to induce RNA interference (RNAi) in the plant or in its fungal pathogen. The question of whether genes in the plant genome can undergo suppression as a result of exogenous RNA application on plant surface is almost unexplored. This study analyzed whether it is possible to influence transcript levels of transgenes, as more prone sequences to silencing, in Arabidopsis genome by direct exogenous application of target long dsRNAs. The data revealed that in vitro synthesized dsRNAs designed to target the gene coding regions of enhanced green fluorescent protein (EGFP) or neomycin phosphotransferase II (NPTII) suppressed their transcript levels in Arabidopsis. The fact that, simple exogenous application of polynucleotides can affect mRNA levels of plant transgenes, opens new opportunities for the development of new scientific techniques and crop improvement strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.