The phenomenon of eSports is omnipresent today. International championships and their competitive athletes thrill millions of spectators who watch as eSports athletes and their teams try to improve and outperform each other. In order to achieve the necessary cognitive and physical top form and to counteract general health problems caused by several hours of training in front of the PC or console, eSports athletes need optimal cognitive, physical and mental training. However, a gap exists in eSports specific health management, including prevention of health issues and training of these functions. To contribute to this topic, we present in this mini review possible avenues for holistic training approaches for cognitively, physically and mentally fitter and more powerful eSports athletes based on interdisciplinary findings. We discuss exergames as a motivating and promising complementary training approach for eSports athletes, which simultaneously combines physical and cognitive stimulation and challenges in an attractive gaming environment. Furthermore, we propose exergames as innovative fullbody eSports-tournament revolution. To conclude, exergames bring new approaches to (physical) eSports, which in turn raise new topics in the growing eSports research and development community.
Background Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system. Patients with MS experience a wide range of physical and cognitive dysfunctions that affect their quality of life. A promising training approach that concurrently trains physical and cognitive functions is video game–based physical exercising (ie, exergaming). Previous studies have indicated that exergames have positive effects on balance and cognitive functions in patients with MS. However, there is still a need for specific, user-centered exergames that function as a motivating and effective therapy tool for patients with MS and studies investigating their usability and feasibility. Objective The aim of this interdisciplinary research project is to develop usable and feasible user-centered exergames for the pressure-sensitive plate Dividat Senso by incorporating theoretical backgrounds from movement sciences, neuropsychology, and game research as well as participatory design processes. Methods Focus groups (patients and therapists) were set up to define the user-centered design process. This was followed by the field testing of newly developed exergame concepts. Two sequential usability and feasibility studies were conducted on patients with MS. The first study included a single exergaming session followed by measurements. Between the first and second studies, prototypes were iterated based on the findings. The second study ran for 4 weeks (1-2 trainings per week), and measurements were taken before and after the intervention. For each study, participants answered the System Usability Scale (SUS; 10 items; 5-point Likert Scale; score range 0-100) and interview questions. In the second study, participants answered game experience–related questionnaires (Flow Short Scale [FSS]: 13 items; 7-point Likert Scale; score range 1-7; Game Flow questionnaire: 17 items; 6-point Likert Scale; score range 1-6). Mixed methods were used to analyze the quantitative and qualitative data. Results In the first study (N=16), usability was acceptable, with a median SUS score of 71.3 (IQR 58.8-80.0). In the second study (N=25), the median SUS scores were 89.7 (IQR 78.8-95.0; before) and 82.5 (IQR 77.5-90.0; after), and thus, a significant decrease was observed after training (z=−2.077; P=.04; r=0.42). Moreover, high values were observed for the overall FSS (pre: median 5.9, IQR 4.6-6.4; post: median 5.8, IQR 5.4-6.2) and overall Game Flow Questionnaire (pre: median 5.0, IQR 4.7-5.3; post: median 5.1, IQR 4.9-5.3). A significant decrease was observed in the item perceived importance (FSS: z=−2.118; P=.03; r=0.42). Interviews revealed that user-centered exergames were usable, well accepted, and enjoyable. Points of reference were identified for future research and development. Conclusions The project revealed that the newly developed, user-centered exergames were usable and feasible for patients with MS. Furthermore, exergame elements should be considered in the development phase of user-centered exergames (for patients with MS). Future studies are needed to provide indications about the efficacy of user-centered exergames for patients with MS.
Physical inactivity remains one of the biggest societal challenges of the 21st century. The gaming industry and the fitness sector have responded to this alarming fact with game-based or gamified training scenarios and thus established the promising trend of exergaming. Exergames—games played with the (whole) body as physical input—have been extolled as potential attractive and effective training tools. Simultaneously, researchers and designers are still exploring new approaches to exploit the full potential of this innovative and enjoyable training method. One way to boost the attractiveness and effectiveness of an exergame is to individualize it with game adaptations. A physiological parameter that is often used to balance the physical challenge and intensity of exergames to the player’s fitness skills is the heart rate (HR). Therefore, researchers and designers often rely on age-based, maximum HR (HRmax) formulas originating from performance diagnostics. In combination with the player’s assessed real-time HR during an exergame session, the pre-determined HRmax is used to adapt the game’s challenge to reach a pre-defined HR and physical intensity level (in-exergame adaptations), respectively. Although the validity and reliability of these age-based HRmax formulas were proven in heterogeneous target populations, their use is still often criticized as HR is an individual parameter that is affected by various internal and external factors. So far, no study has investigated whether the formula-based pre-calculated HRmax compared to a standardized individually pre-assessed HRmax elicits different training intensities, training experiences, and flow feelings in an exergame. Therefore, we compared both variants for in-exergame adaptation with the ExerCube – a functional high-intensity interval training exergame – in healthy young adults. Comparing the results of the two conditions, no significant differences were found for HR parameters and perceived physical and cognitive exertion, nor for overall flow feelings and physical activity enjoyment. Thus, the formula-based in-exergame adaptation approach was suitable in the presented study population, and the ExerCube provided an equally reliable in-exergame adaptation and comparable exergame play experiences. We discuss our findings in the context of related work on exergame adaptation approaches and draw out some implications for future adaptive exergame design and research topics.
Background Exergames are playful technology-based exercise programs. They train physical and cognitive functions to preserve independence in older adults (OAs) with disabilities in daily activities and may reduce their risk of falling. This study gathered in-depth knowledge and understanding of three different user groups’ experiences in and relevant needs, worries, preferences, and expectations of technology-based training, to develop an exergame training device for OAs. Methods We conducted a qualitative study using semi-structured focus group interviews of primary (OAs in geriatric or neurological rehabilitation) and secondary (health professionals) end users, as well as expert interviews of tertiary end users (health insurance experts or similar), exploring user perspectives on adjusting an existing exergame to OAs’ needs. Voice-recorded interviews were transcribed by researchers and analyzed using thematic analysis (TA) following an inductive, data-driven, iterative approach. Results We interviewed 24 primary, 18 secondary, and 9 tertiary end users at two rehabilitation centers in Austria and Switzerland. Our TA approach identified five to six themes per user group. Themes in the primary end user group reflected aspects of safety, training goals, individuality, game environment, social interactions, and physical and technical overload. Themes in the secondary end user group comprised facets of meaningfulness, distraction through the game environment, safety, gamification elements, the availability and accessibility of the exergame. Tertiary end users’ themes addressed aspects of financial reimbursement, suitable target populations, professional training for the handling of exergame devices, training goals, and concerns about the use of exergames in geriatric rehabilitation. Conclusions In conclusion, an exergame for OAs must be safe, motivating and fully adaptable to the target group while promoting the return to or preservation of autonomy and independence in daily life. Our findings contribute to developing hard- and software extensions for the ExerG training device. Further research is needed to expand the validity of our findings to larger populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.