While identification and analysis of genes affecting genome stability have traditionally relied on reporter assays, whole-genome sequencing technologies now enable, in principle, direct measurements of genome instability globally and at scale. Here, we have surveyed the Saccharomyces cerevisiae gene knockout collection by sequencing the whole genomes of its strains, and characterized genomic changes caused by the absence of essentially any one of the non-essential yeast genes. Analysing this dataset (http://sgv.gurdon.cam.ac.uk) reveals genes affecting repetitive-element maintenance or mutagenesis, highlights cross-talks between nuclear Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:
An erroneous transcriptional process, known as molecular misreading, gives rise to an alternative transcript of the ubiquitin B (UBB) gene. This transcript encodes the protein UBB(+1), which comprises a ubiquitin moiety and a 19-aa C-terminal extension. UBB(+1) is found in affected neurons in neurodegenerative diseases and behaves as an atypical ubiquitin fusion degradation (UFD) proteasome substrate that is poorly degraded and impedes the ubiquitin/proteasome system. Here, we show that the limited length of UBB(+1) is responsible for its inefficient degradation and inhibitory activity. Designed UFD substrates with an equally short 19-aa or a 20-aa C-terminal extension were also poorly degraded and had a general inhibitory activity on the ubiquitin/proteasome system in two unrelated cell lines. Extending the polypeptide to 25 aa sufficed to convert the protein into an efficiently degraded proteasome substrate that lacked inhibitory activity. A similar length dependency was found for degradation of two UFD substrates in Saccharomyces cerevisiae, which suggests that the mechanisms underlying this length constraint are highly conserved. Extending UBB(+1) also converted this protein into an efficient substrate of the proteasome. These observations provide an explanation for the accumulation of UBB(+1) in neurodegenerative disorders and offers new insights into the physical constraints determining proteasomal degradation.
Accurate and timely detection of transgene copy number in sugarcane is currently hampered by the requirement to use Southern blotting, needing relatively large amounts of genomic DNA and, therefore, the continued growth and maintenance of bulky plants in containment glasshouses. In addition, the sugarcane genome is both polyploid and aneuploid, complicating the identification of appropriate genes for use as references in the development of a high-throughput method. Using bioinformatic techniques followed by in vitro testing, two genes that appear to occur once per base genome of sugarcane were identified. Using these genes as reference genes, a high-throughput assay employing RT-qPCR was developed and tested using a group of sugarcane plants that contained unknown numbers of copies of the nptII gene encoding kanamycin resistance. Using this assay, transgene copy numbers from 3 to more than 50 were identified. In comparison, Southern blotting accurately identified the number of transgene copies for one line and by inference for another, but was not able to provide an accurate estimation for transgenic lines containing numerous copies of the nptII gene. Using the reference genes identified in this study, a high-throughput assay for the determination of transgene copy number was developed and tested for sugarcane. This method requires much less input DNA, can be performed much earlier in the production of transgenic sugarcane plants and allows much more efficient assessment of numerous potentially transgenic lines than Southern blotting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.