The task of obstacle avoidance using maritime vessels, such as Unmanned Surface Vehicles (USV), has traditionally been solved using specialized modules that are designed and optimized separately. However, this approach requires a deep insight into the environment, the vessel, and their complex dynamics. We propose an alternative method using Imitation Learning (IL) through Deep Reinforcement Learning (RL) and Deep Inverse Reinforcement Learning (IRL) and present a system that learns an end-to-end steering model capable of mapping radar-like images directly to steering actions in an obstacle avoidance scenario. The USV used in the work is equipped with a Radar sensor and we studied the problem of generating a single action parameter, heading. We apply an IL algorithm known as generative adversarial imitation learning (GAIL) to develop an end-to-end steering model for a scenario where avoidance of an obstacle is the goal. The performance of the system was studied for different design choices and compared to that of a system that is based on pure RL. The IL system produces results that indicate it is able to grasp the concept of the task and that in many ways are on par with the RL system. We deem this to be promising for future use in tasks that are not as easily described by a reward function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.