A distillation device that acquires continuous and synchronized measurements of temperature, percentage of distilled fraction and NIR spectra has been designed for real-time monitoring of distillation processes. As a process model, synthetic commercial gasoline batches produced in Brazil, which contain mixtures of pure gasoline blended with ethanol have been analyzed. The information provided by this device, i.e., distillation curves and NIR spectra, has served as initial information for the proposal of new strategies of process modeling and multivariate statistical process control (MSPC). Process modeling based on PCA batch analysis provided global distillation trajectories, whereas multiset MCR-ALS analysis is proposed to obtain a component-wise characterization of the distillation evolution and distilled fractions. Distillation curves, NIR spectra or compressed NIR information under the form of PCA scores and MCR-ALS concentration profiles were tested as the seed information to build MSPC models. New on-line PCA-based MSPC approaches, some inspired on local rank exploratory methods for process analysis, are proposed and work as follows: a) MSPC based on individual process observation models, where multiple local PCA models are built considering the sole information in each observation point; b) Fixed Size Moving Window - MSPC, in which local PCA models are built considering a moving window of the current and few past observation points; and c) Evolving MSPC, where local PCA models are built with an increasing window of observations covering all points since the beginning of the process until the current observation. Performance of different approaches has been assessed in terms of sensitivity to fault detection and number of false alarms. The outcome of this work will be of general use to define strategies for on-line process monitoring and control and, in a more specific way, to improve quality control of petroleum derived fuels and other substances submitted to automatic distillation processes monitored by NIRS.
The present work assesses the possibility of using spectrophotometry in the near-mid-ultraviolet and visible wavelength ranges (282-790 nm) for the direct monitoring of treatment performance in municipal wastewater treatment plants (WWTPs). Principal component analysis (PCA) was used to analyze spectral data from samples collected along three WWTP process lines with different primary and secondary treatment units. The clustering observed in PCA score plots was mainly attributed to the suspended solids fraction present in the wastewater and highlighted differences in solids quality between plants and along the treatment lines. Thus, satisfactory partial least squares (PLS) calibration models to estimate total suspended solids (TSS) values from the acquired spectra could only be established per plant. The PLS models were established using 1-2 factors, with root mean error of cross-validation and coefficient of determination values in the 50-86 mg TSS L(-1) and 82-95% ranges, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.