UV radiation of the skin triggers keratinocytes to secrete endothelin-1 (ET-1) that binds to endothelin receptors on neighboring melanocytes. Melanocytes respond with a prolonged increase in intracellular Ca(2+) concentration ([Ca(2+)](i)), which is necessary for proliferation and melanogenesis. A major fraction of the Ca(2+) signal is caused by entry through Ca(2+)-permeable channels of unknown identity in the plasma membrane. ORAI Ca(2+) channels are molecular determinants of Ca(2+) release-activated Ca(2+) (CRAC) channels and are expressed in many tissues. Here, we show that ORAI1-3 and their activating partners stromal interaction molecules 1 and 2 (STIM1 and STIM2) are expressed in human melanocytes. Although ORAI1 is the predominant ORAI isoform, STIM2 mRNA expression exceeds STIM1. Inhibition of ORAI1 by 2-aminoethoxydiphenyl borate (2-APB) or downregulation of ORAI1 by small interfering RNA (siRNA) reduced Ca(2+) entry and CRAC current amplitudes in activated melanocytes. In addition, suppression of ORAI1 caused reduction in the ET-1-induced cellular viability, melanin synthesis, and tyrosinase activity. Our results imply a role for ORAI1 channels in skin pigmentation and their potential involvement in UV-induced stress responses of the human skin.
Various human illnesses, including several types of cancer and infectious diseases, are related to changes in the cellular redox homeostasis. During the last decade, several approaches have been explored which employ such disturbed redox balances for the benefit of therapy. Compounds able to modulate the intracellular redox state of cells have been developed, which effectively, yet also selectively, appear to kill cancer cells and a range of pathogenic microorganisms. Among the various agents employed, certain redox catalysts have shown considerable promise since they are non-toxic on their own yet develop an effective, often selective cytotoxicity in the presence of the 'correct' intracellular redox partners. Aminoalkylation, amide coupling and multicomponent reactions are suitable synthetic methods to generate a vast number of such multifunctional catalysts, which are chemically diverse and, depending on their structure, exhibit various interesting biological activities.
ADAM 10, 12 and 17 showed different expression pattern in BCC histologic subtypes, indicating their different role in the BCC pathogenesis. Overexpression of ADAM 10, 12 and 17 immunoreactivity in deep invasion area of BCC indicates that these three proteases may play an important role in the locally invasive and highly destructive growth behavior of BCC. Additionally, we suggest that ADAM 17 may play an important role in early development of BCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.