Accurate canopy base height (CBH) information is essential for forest and fire managers since it constitutes a key indicator of seedling growth, wood quality and forest health as well as a necessary input in fire behavior prediction systems such as FARSITE, FlamMap and BEHAVE. The present study focused on the potential of airborne LiDAR data analysis to estimate plot-level CBH in a dense uneven-aged structured forest on complex terrain. A comparative study of two widely employed methods was performed, namely the voxel-based approach and regression analysis, which revealed a clear outperformance of the latter. More specifically, the voxel-based CBH estimates were found to lack correlation with the reference data ( R 2 = 0.15 , r R M S E = 42.36 % ) while most CBH values were overestimated resulting in an r b i a s of − 17.52 % . On the contrary, cross-validation of the developed regression model showcased an R 2 , r R M S E and r b i a s of 0 . 61 , 18.19 % and − 0.09 % respectively. Overall analysis of the results proved the voxel-based approach incapable of accurately estimating plot-level CBH due to vegetation and topographic heterogeneity of the forest environment, which however didn’t affect the regression analysis performance.
Surface fuel load (SFL) constitutes one of the most significant fuel components and is used as an input variable in most fire behavior prediction systems. The aim of the present study was to investigate the potential of discrete-return multispectral Light Detection and Ranging (LiDAR) data to reliably predict SFL in a coniferous forest characterized by dense overstory and complex terrain. In particular, a linear regression analysis workflow was employed with the separate and combined use of LiDAR-derived structural and pulse intensity information for the load estimation of the total surface fuels and individual surface fuel types. Following a leave-one-out cross-validation (LOOCV) approach, the models developed from the different sets of predictor variables were compared in terms of their estimation accuracy. LOOCV indicated that the predictive models produced by the combined use of structural and intensity metrics significantly outperformed the models constructed with the individual sets of metrics, exhibiting an explained variance (R2) between 0.59 and 0.71 (relative Root Mean Square Error (RMSE) 19.3–37.6%). Overall, the results of this research showcase that both structural and intensity variables provided by multispectral LiDAR data are significant for surface fuel load estimation and can successfully contribute to effective pre-fire management, including fire risk assessment and behavior prediction in case of a fire event.
Stem biomass is a fundamental component of the global carbon cycle that is essential for forest productivity estimation. Over the last few decades, Light Detection and Ranging (LiDAR) has proven to be a useful tool for accurate carbon stock and biomass estimation in various biomes. The aim of this study was to investigate the potential of multispectral LiDAR data for the reliable estimation of single-tree total and barkless stem biomass (TSB and BSB) in an uneven-aged structured forest with complex topography. Destructive and non-destructive field measurements were collected for a total of 67 dominant and co-dominant Abies borisii-regis trees located in a mountainous area in Greece. Subsequently, two allometric equations were constructed to enrich the reference data with non-destructively sampled trees. Five different regression algorithms were tested for single-tree BSB and TSB estimation using height (height percentiles and bicentiles, max and average height) and intensity (skewness, standard deviation and average intensity) LiDAR-derived metrics: Generalized Linear Models (GLMs), Gaussian Process (GP), Random Forest (RF), Support Vector Regression (SVR) and Extreme Gradient Boosting (XGBoost). The results showcased that the RF algorithm provided the best overall predictive performance in both BSB (i.e., RMSE = 175.76 kg and R2 = 0.78) and TSB (i.e., RMSE = 211.16 kg and R2 = 0.65) cases. Our work demonstrates that BSB can be estimated with moderate to high accuracy using all the tested algorithms, contrary to the TSB, where only three algorithms (RF, SVR and GP) can adequately provide accurate TSB predictions due to bark irregularities along the stems. Overall, the multispectral LiDAR data provide accurate stem biomass estimates, the general applicability of which should be further tested in different biomes and ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.