Mitotic chromosome assembly remains a big mystery in biology. Condensin complexes are pivotal for chromosome architecture yet how they shape mitotic chromatin remains unknown. Using acute inactivation approaches and live-cell imaging in Drosophila embryos, we dissect the role of condensin I in the maintenance of mitotic chromosome structure with unprecedented temporal resolution. Removal of condensin I from pre-established chromosomes results in rapid disassembly of centromeric regions while most chromatin mass undergoes hyper-compaction. This is accompanied by drastic changes in the degree of sister chromatid intertwines. While wild-type metaphase chromosomes display residual levels of catenations, upon timely removal of condensin I, chromosomes present high levels of de novo Topoisomerase II (TopoII)-dependent re-entanglements, and complete failure in chromosome segregation. TopoII is thus capable of re-intertwining previously separated DNA molecules and condensin I continuously required to counteract this erroneous activity. We propose that maintenance of chromosome resolution is a highly dynamic bidirectional process.DOI: http://dx.doi.org/10.7554/eLife.26120.001
SummaryMob1 is a component of both the mitotic exit network and Hippo pathway, being required for cytokinesis, control of cell proliferation and apoptosis. Cell division accuracy is crucial in maintaining cell ploidy and genomic stability and relies on the correct establishment of the cell division axis, which is under the control of the cell's environment and its intrinsic polarity. The ciliate Tetrahymena thermophila possesses a permanent anterior-posterior axis, left-right asymmetry and divides symmetrically. These unique features of Tetrahymena prompted us to investigate the role of Tetrahymena Mob1. Unexpectedly, we found that Mob1 accumulated in basal bodies at the posterior pole of the cell, and is the first molecular polarity marker so far described in Tetrahymena. In addition, Mob1 depletion caused the abnormal establishment of the cell division plane, providing clear evidence that Mob1 is important for its definition. Furthermore, cytokinesis was arrested and ciliogenesis delayed in Tetrahymena cells depleted of Mob1. This is the first evidence for an involvement of Mob1 in cilia biology. In conclusion, we show that Mob1 is an important cell polarity marker that is crucial for correct division plane placement, for cytokinesis completion and for normal cilia growth rates.
Live imaging of cells carrying rearranged chromosomes shows that misplaced heterochromatin is sufficient to induce ectopic cohesion and chromosome stretching during mitosis, and may compromise genetic stability.
BackgroundThe eukaryotic cytosolic chaperonin CCT is a hetero-oligomeric complex formed by two rings connected back-to-back, each composed of eight distinct subunits (CCTα to CCTζ). CCT complex mediates the folding, of a wide range of newly synthesised proteins including tubulin (α, β and γ) and actin, as quantitatively major substrates.Methodology/Principal FindingsWe disrupted the genes encoding CCTα and CCTδ subunits in the ciliate Tetrahymena. Cells lacking the zygotic expression of either CCTα or CCTδ showed a loss of cell body microtubules, failed to assemble new cilia and died within 2 cell cycles. We also show that loss of CCT subunit activity leads to axoneme shortening and splaying of tips of axonemal microtubules. An epitope-tagged CCTα rescued the gene knockout phenotype and localized primarily to the tips of cilia. A mutation in CCTα, G346E, at a residue also present in the related protein implicated in the Bardet Biedel Syndrome, BBS6, also caused defects in cilia and impaired CCTα localization in cilia.Conclusions/SignificanceOur results demonstrate that the CCT subunits are essential and required for ciliary assembly and maintenance of axoneme structure, especially at the tips of cilia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.