Alport syndrome is an inherited nephropathy associated with mutations in genes encoding type IV collagen chains present in the glomerular basement membrane. COL4A5 mutations are associated with the major X-linked form of the disease, and COL4A3 and COL4A4 mutations are associated with autosomal recessive and dominant forms (thought to be involved in 15% and 1%-5% of the families, respectively) and benign familial hematuria. Mutation screening of these three large genes is time-consuming and expensive. Here, we carried out a combination of multiplex PCR, amplicon quantification, and next generation sequencing (NGS) analysis of three genes in 101 unrelated patients. We identified 88 mutations and 6 variations of unknown significance on 116 alleles in 83 patients. Two additional indel mutations were found only by secondary Sanger sequencing, but they were easily identified retrospectively with the webbased sequence visualization tool Integrative Genomics Viewer. Altogether, 75 mutations were novel. Sequencing the three genes simultaneously was particularly advantageous as the mode of inheritance could not be determined with certainty in many instances. The proportion of mutations in COL4A3 and COL4A4 was notably high, and the autosomal dominant forms of Alport syndrome appear more frequently than reported previously. Finally, this approach allowed the identification of large COL4A3 and COL4A4 rearrangements not described previously. We conclude that NGS is efficient, reduces screening time and cost, and facilitates the provision of appropriate genetic counseling in Alport syndrome.
Our findings indicate that haploinsufficiency of PDE4D results in a novel intellectual disability syndrome, the 5q12.1-haploinsufficiency syndrome, with several opposing features compared with acrodysostosis that is caused by dominant negative mutations. In addition, our results expand the spectrum of PDE4D mutations underlying acrodysostosis and indicate that, in contrast to previous reports, patients with PDE4D mutations may have significant hormone resistance with consequent endocrine abnormalities.
Taken together, our human genetic and in vivo data suggest that defective migration of subpopulations of neuronal cells due to haploinsufficiency of CTNND2 contribute to the cognitive dysfunction in our patients.
BackgroundTissue-specific integrative omics has the potential to reveal new genic elements important for developmental disorders.MethodsTwo pediatric patients with global developmental delay and intellectual disability phenotype underwent array-CGH genetic testing, both showing a partial deletion of the DLG2 gene. From independent human and murine omics datasets, we combined copy number variations, histone modifications, developmental tissue-specific regulation, and protein data to explore the molecular mechanism at play.ResultsIntegrating genomics, transcriptomics, and epigenomics data, we describe two novel DLG2 promoters and coding first exons expressed in human fetal brain. Their murine conservation and protein-level evidence allowed us to produce new DLG2 gene models for human and mouse. These new genic elements are deleted in 90% of 29 patients (public and in-house) showing partial deletion of the DLG2 gene. The patients’ clinical characteristics expand the neurodevelopmental phenotypic spectrum linked to DLG2 gene disruption to cognitive and behavioral categories.ConclusionsWhile protein-coding genes are regarded as well known, our work shows that integration of multiple omics datasets can unveil novel coding elements. From a clinical perspective, our work demonstrates that two new DLG2 promoters and exons are crucial for the neurodevelopmental phenotypes associated with this gene. In addition, our work brings evidence for the lack of cross-annotation in human versus mouse reference genomes and nucleotide versus protein databases.Electronic supplementary materialThe online version of this article (doi:10.1186/s13073-017-0452-y) contains supplementary material, which is available to authorized users.
Craniosynostosis has rarely been described in patients with Kabuki syndrome. We report here a boy with facial asymmetry due to combined premature synostosis of the right coronal and sagittal sutures as well as several symptoms reminiscent of Kabuki syndrome (KS). Our case supports previous observations and suggests that craniosynostosis is a part of the KS phenotype. The uniqueness of our case is the sporadic co-occurrence of two genetic disorders, that is, a de novo frameshift variant in the KMT2D gene and a de novo 3.2 Mbp 10q22.3q23.1 deletion. Our findings emphasize the importance of the initial clinical assessment of children with craniosynostosis and that genomic and monogenic disorders, such as Kabuki syndrome, should be considered among the differential diagnoses of syndromic forms of craniosynostosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.