BACKGROUND AND IMPORTANCE At least 25% of patients with idiopathic generalized epilepsy do not obtain adequate seizure control with medication. This report describes the first use of responsive neurostimulation (RNS), bilaterally targeting the centromedian/ventrolateral (CM/VL) region in a patient with drug-refractory Jeavons syndrome (eyelid myoclonia with absences). CLINICAL PRESENTATION A patient, diagnosed with eyelid myoclonia with absences (EMA) and refractory to medication, was offered RNS treatment in the CM/VL region of the thalamus. Stimulation was triggered by thalamic neural activity having morphological, spectral, and synchronous features that corresponded to 3- to 5-Hz spike-wave discharges recorded on prior scalp electroencephalography. CONCLUSION RNS decreased daily absence seizures from a mean of 60 to ≤10 and maintained the patient's level of consciousness during the occurring episodes. This therapy should be evaluated further for its potential to treat patients with pharmaco-refractory generalized epilepsy.
SUMMARYTwo adaptationist hypotheses have been proposed to explain why stress, particularly elevation of stress hormones (i.e. glucocorticoids), tends to suppress immune functions. One is that immune suppression represents efforts to minimize autoimmune responses to self-antigens released as organisms cope with stressors (i.e. the autoimmune-avoidance hypothesis). The other is that immune suppression occurs to promote a shunting of resources to life processes more conducive to survival of the stressor (i.e. the re-allocation hypothesis). Here in wild-caught house sparrows (Passer domesticus), we tested the second hypothesis, asking whether sustained elevation of baseline glucocorticoids, due to captivity, caused a greater rate of decline in immune functions than flight performance. A greater decline in immune functions than flight performance would support the reallocation hypothesis. As in previous studies, we found that captivity tended to alter baseline corticosterone, suggesting that house sparrows experience captivity as a stressor. Captivity also affected several constitutive and induced innate immune metrics: bacterial (Escherichia coli) killing activity of blood and oxidative burst of leukocytes both changed in a manner consistent with immune disregulation. In contrast, breast muscle size and vertical flight (hovering) duration improved over captivity. Collectively, these changes provide indirect support for the re-allocation hypothesis, although within individuals, changes in immune and physical performance were unrelated.Key words: Passer domesticus, house sparrow, trade-off, captivity, corticosterone, stress. Specifically, we asked whether after 6weeks in captivity (1) baseline CORT was elevated, and (2) constitutive [in vitro bacterial killing ability (Liebl and Martin, 2009b)] and induced (oxidative burst responses) innate immune responses (Sild and Horak, 2010) were reduced more so than the size of the major flight muscle and the ability of birds to perform hovering flight (Veasey et al., 1998). Although the re-allocation hypothesis was proposed to explain (among other things) the effects of glucocorticoids on immune functions over very short periods (e.g. minutes to hours), we expected that the apoptotic and anti-apoptotic effects of glucocorticoids on various cells (Amsterdam et al., 2002;Meagher et al., 1996) might mediate resource re-allocations over longer periods (e.g. days to weeks). We measured baseline CORT because alterations in this hormone might predict changes in performance and/or immune functions (Williams, 2008). We chose these induced and constitutive innate immune functions because they are broadly effective at controlling diverse parasites and they can be measured repeatedly (weekly) from small blood volumes (Millet et al., 2007). We measured vertical flight because it is one of the most energydemanding movements birds use (Dial et al., 1997). More importantly, it is one of the few performance parameters that can be accurately and repeatedly scored in songbirds [although for thi...
The full neural circuits of conscious perception remain unknown. Using a visual perception task, we directly recorded a subcortical thalamic awareness potential (TAP). We also developed a unique paradigm to classify perceived versus not perceived stimuli using eye measurements to remove confounding signals related to reporting on conscious experiences. Using fMRI, we discovered three major brain networks driving conscious visual perception independent of report: first, increases in signal detection regions in visual, fusiform cortex, and frontal eye fields; and in arousal/salience networks involving midbrain, thalamus, nucleus accumbens, anterior cingulate, and anterior insula; second, increases in frontoparietal attention and executive control networks and in the cerebellum; finally, decreases in the default mode network. These results were largely maintained after excluding eye movement-based fMRI changes. Our findings provide evidence that the neurophysiology of consciousness is complex even without overt report, involving multiple cortical and subcortical networks overlapping in space and time.
Neurologic manifestations of coronavirus disease (COVID-19) such as encephalopathy and seizures have been described. To our knowledge, detailed EEG findings in COVID-19have not yet been reported. This report adds to the scarce body of evidence.Methods: We identified eight COVID-19 positive patients who underwent EEG monitoring in our hospital system.Results: EEGs were most commonly ordered for an altered level of consciousness, a nonspecific neurologic manifestation. We observed generalized background slowing in all patients and generalized epileptiform discharges with triphasic morphology in three patients. Focal electrographic seizures were observed in one patient with a history of focal epilepsy and in another patient with no such history. Five of eight patients had a previous diagnosis of epilepsy, suggesting that pre-existing epilepsy can be a potential risk factor for COVID-19-associated neurological manifestations. Five of eight patients who underwent EEG experienced a fatal outcome of infection.Conclusions: Our findings underscore previous observations that neurologic manifestations are common in severe cases. COVID-19 patients with epilepsy may have an increased risk of neurological manifestations and abnormal EEG.
Localization of epileptogenic zone currently requires prolonged intracranial recordings to capture seizure, which may take days to weeks. The authors developed a novel method to identify the seizure onset zone (SOZ) and predict seizure outcome using short‐time resting‐state stereotacticelectroencephalography (SEEG) data. In a cohort of 27 drug‐resistant epilepsy patients, the authors estimated the information flow via directional connectivity and inferred the excitation‐inhibition ratio from the 1/f power slope. They hypothesized that the antagonism of information flow at multiple frequencies between SOZ and non‐SOZ underlying the relatively stable epilepsy resting state could be related to the disrupted excitation‐inhibition balance. They found flatter 1/f power slope in non‐SOZ regions compared to the SOZ, with dominant information flow from non‐SOZ to SOZ regions. Greater differences in resting‐state information flow between SOZ and non‐SOZ regions are associated with favorable seizure outcome. By integrating a balanced random forest model with resting‐state connectivity, their method localized the SOZ with an accuracy of 88% and predicted the seizure outcome with an accuracy of 92% using clinically determined SOZ. Overall, this study suggests that brief resting‐state SEEG data can significantly facilitate the identification of SOZ and may eventually predict seizure outcomes without requiring long‐term ictal recordings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.