Crowding (the disruption of object recognition in clutter) presents the fundamental limitation on peripheral vision. For simple objects, crowding is strong when target/flanker elements are similar and weak when they differ – a selectivity for target-flanker similarity. In contrast, the identification of upright holistically-processed face stimuli is more strongly impaired by upright than inverted flankers, whereas inverted face-targets are impaired by both – a pattern attributed to an additional stage of crowding selective for “holistic similarity” between faces. We propose instead that crowding is selective for target-flanker similarity in all stimuli, but that this selectivity is obscured by task difficulty with inverted face-targets. Using judgements of horizontal eye-position that are minimally affected by inversion, we find that crowding is strong when target-flanker orientations match and weak when they differ for both upright and inverted face-targets. By increasing task difficulty, we show that this selectivity for target-flanker similarity is obscured even for upright face-targets. We further demonstrate that this selectivity follows differences in the spatial order of facial features, rather than “holistic similarity” per se. There is consequently no need to invoke a distinct stage of holistic crowding for faces – crowding is selective for target-flanker similarity, even with complex stimuli such as faces.
Visual crowding is the disruptive effect of clutter on object recognition. Although most prominent in adult peripheral vision, crowding also disrupts foveal vision in typically developing children and those with strabismic amblyopia. Do these crowding effects share the same mechanism? Here we exploit observations that crowded errors in peripheral vision are not random: Target objects appear either averaged with the flankers (assimilation) or replaced by them (substitution). If amblyopic and developmental crowding share the same mechanism, then their errors should be similarly systematic. We tested foveal vision in children aged 3 to 8 years with typical vision or strabismic amblyopia and peripheral vision in typical adults. The perceptual effects of crowding were measured by requiring observers to adjust a reference stimulus to match the perceived orientation of a target “Vac-Man” element. When the target was surrounded by flankers that differed by ± 30°, all three groups (adults and children with typical or amblyopic vision) reported orientations between the target and flankers (assimilation). Errors were reduced with ± 90° differences but primarily matched the flanker orientation (substitution) when they did occur. A population pooling model of crowding successfully simulated this pattern of errors in all three groups. We conclude that the perceptual effects of amblyopic and developing crowding are systematic and resemble the near periphery in adults, suggesting a common underlying mechanism.
Crowding (the disruption of object recognition in clutter) presents the fundamental limitation on peripheral vision. For simple objects, crowding is strong when target/flanker elements are similar and weak when they differ – a selectivity for target-flanker similarity. In contrast, the identification of upright holistically-processed face stimuli is more strongly impaired by upright than inverted flankers, whereas inverted face-targets are impaired by both – a pattern attributed to an additional stage of crowding selective for “holistic similarity” between faces. We propose instead that crowding is selective for target-flanker similarity in all stimuli, but that this selectivity is obscured by task difficulty with inverted face-targets. Using judgements of horizontal eye-position that are minimally affected by inversion, we find that crowding is strong when target-flanker orientations match and weak when they differ for both upright and inverted face-targets. By increasing task difficulty, we show that this selectivity for target-flanker similarity is obscured even for upright face-targets. We further demonstrate that this selectivity follows differences in the spatial order of facial features, rather than “holistic similarity” per se. There is consequently no need to invoke a distinct stage of holistic crowding for faces – crowding is selective for target-flanker similarity, even with complex stimuli such as faces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.