The epithelium is part of an integrated immune system where cytokines, toll-like receptors and their ligands, and extracellular vesicles play a crucial role in initiating an innate immune response. IL-36γ is a pro-inflammatory member of the IL-1 family that is mainly expressed by epithelial cells, but regulation of its expression and release are only beginning to be understood. Previous studies reported that IL-36γ is abundant in recurrent respiratory papillomatosis, a rare but devastating disease caused by human papillomaviruses (HPV) types 6 and 11, in which papillomas recurrently grow in and block the airway. Despite the overexpression of IL-36γ, papilloma tissues show no evidence of inflammation, possibly due to suppression of its release by HPVs. We have used primary human foreskin keratinocytes as a model to study IL-36γ regulation in normal epithelial cells. Low doses of poly(I:C) mediate expression and release of IL-36γ without inducing the cell death reported by those using high doses. PKR, an enzyme required for inflammasome activation, does not contribute to controlled release of IL36γ. The keratinocytes secrete IL-36γ in two forms, soluble and in extracellular vesicles. We conclude that there are two separately regulated pathways for the controlled secretion of IL-36γ from keratinocytes, which could contribute to the modulation of both local and systemic immune responses to viruses and other pathogens.
Recurrent respiratory papillomatosis (RRP) is a rare, chronic disease caused by human papillomaviruses (HPVs) types 6 and 11 that is characterized by the polarization of adaptive immune responses that support persistent HPV infection. Respiratory papillomas express elevated mRNA levels of IL-36γ, a proinflammatory cytokine in comparison to autologous clinically normal laryngeal tissues; however there is no evidence of inflammation in these lesions. Consistent with this, respiratory papillomas do not contain TH1-like CD4(+) T-cells or cytotoxic CD8(+) T-cells, but instead contain a predominance of TH2-like and T regulatory cells (Tregs). In addition, papillomas also are infiltrated with immature Langerhans cells (iLCs). In this study, we show that papilloma cells express IL-36γ protein, and that human keratinocytes transduced with HPV11 have reduced IL-36γ secretion. We now provide the first evidence that peripheral blood-derived iLCs respond to IL-36γ by expressing inflammatory cytokines and chemokines. When stimulated with IL-36γ, iLCs from patients with RRP had lower expression levels of the TH2-like chemokine CCL-20 as compared with controls. Patients' iLCs also had decreased steady state levels of CCL-1, which is a proinflammatory chemokine. Moreover, CCL-1 levels in iLCs inversely correlated with the severity of RRP. The combined decrease of TH1- and a TH2-like chemokines by iLCs from patients could have consequences in the priming of IFN-γ expression by CD8(+) T-cells. Taken together, our results suggest that, in RRP, there is a defect in the proinflammatory innate immune responses made by iLCs in response to IL-36γ. The consequence of this defect may lead to persistent HPV infection by failing to support an effective HPV-specific, TH1-like and/or Tc1-like adaptive response, thus resulting in the predominant TH2-like and/or Treg micromilieu present in papillomas.
Head and neck oncologists have traditionally relied upon clinical tumor features and patient characteristics to guide care of individual patients. As surgical, radiotherapeutic, and systemic treatments have evolved to become more anatomically precise and mechanistically specific, the opportunity for improved cure and functional patient recovery has never been more promising for this historically debilitating cancer. However, personalized treatment must be accompanied by sophisticated patient selection to triage the application of advanced therapies towards ideal patient candidates. In this monograph, we review current progress, investigative themes, and key challenges facing head and neck cancer biomarker development intended to make personalized head and neck cancer treatment a clinical reality.
Recurrent respiratory papillomatosis (RRP) is caused by human papillomaviruses (HPVs), primarily types 6 and 11. The disease is characterized by multiple recurrences of airway papillomas, resulting in high levels of morbidity and significant mortality. The prevalence of latent HPV in the larynx of the general population is much greater than the prevalence of RRP, suggesting a host-susceptibility factor for disease. We report that the oncogene Rac1 and its downstream product cyclooxygenase-2 (COX-2) are both constitutively expressed at high levels throughout the airway of these patients, independent of active HPV infection. Use of the COX-2 inhibitor celecoxib in primary papilloma cell culture resulted in the downregulation of HPV transcription. Furthermore, a proof-of-principle study treating three patients with severe RRP with celecoxib resulted in remission of disease in all cases. Therefore, we have identified the first pharmacologically targetable host-susceptibility pathway that contributes to RRP recurrence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.