The advance of cotton farming in the Brazilian savannah boosted and made possible a highly technified, efficient and profitable production, elevating the country from the condition of cotton fiber importer in the 70s to one of the main exporters so far. Despite the increasing contribution of technologies such as transgenic cultivars, machines, inputs and more efficient data management, in recent years there has been a stagnation of cotton productivity in the State of Mato Grosso (MT). Data Mining (MD) techniques offer an excellent opportunity to assess this problem. Through the rules-based classification applied to a real database (BD) of cotton production in MT, factors were identified that were affecting and consequently limiting the increase in productivity. In the pre-processing of the data, we perform the attributes, selection, transformation and identification of outliers. Numerical attributes were discretized using automatic techniques: Kononenko (KO), Better Encoding (BE) and combination: KO + BE. In modeling the rule algorithms used were PART and JRip, both implemented in the WEKA tool. Performance was assessed using statistical metrics: accuracy, recall, cost and their combination using the I_FC index (created by the authors). Results showed better performance for the PART classifier, with discretization by the KO + BE technique, followed by binary conversion. The analysis of the rules made it possible to identify the attributes that most impact productivity. This article is an excerpt from an ICMC/USP Professional Master's Dissertation in Science carried out in São Carlos-SP/BR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.