Trauma to the central and peripheral
nervous systems often lead
to serious morbidity. Current surgical methods for repairing or replacing
such damage have limitations. Tissue engineering offers a potential
alternative. Here we show that functionalized α-helical-peptide
hydrogels can be used to induce attachment, migration, proliferation
and differentiation of murine embryonic neural stem cells (NSCs).
Specifically, compared with undecorated gels, those functionalized
with Arg-Gly-Asp-Ser (RGDS) peptides increase the proliferative activity
of NSCs; promote their directional migration; induce differentiation,
with increased expression of microtubule-associated protein-2, and
a low expression of glial fibrillary acidic protein; and lead to the
formation of larger neurospheres. Electrophysiological measurements
from NSCs grown in RGDS-decorated gels indicate developmental progress
toward mature neuron-like behavior. Our data indicate that these functional
peptide hydrogels may go some way toward overcoming the limitations
of current approaches to nerve-tissue repair.
Protein trans-splicing using split inteins is a powerful and convenient reaction to chemically modify recombinantly expressed proteins under mild conditions. In particular, semisynthetic protein trans-splicing with one intein fragment short enough to be accessible by solid-phase peptide synthesis can be used to transfer a short peptide segment with the desired synthetic moiety to the protein of interest. In this chapter, we provide detailed protocols for two such split intein systems. The M86 mutant of the Ssp DnaB intein and the MX1 mutant of the AceL-TerL intein are two highly engineered split inteins with very short N-terminal intein fragments of only 11 and 25 amino acids, respectively, and allow the efficient N-terminal labeling of proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.