We investigate the transfer of orbital angular momentum among multiple beams involved in a coherent Raman interaction. We use a liquid crystal light modulator to shape pump and Stokes beams into optical vortices with various integer values of topological charge, and cross them in a Raman-active crystal to produce multiple Stokes and anti-Stokes sidebands. We measure the resultant vortex charges using a tilted-lens technique. We verify that in every case the generated beams' topological charges obey a simple relationship, resulting from angular momentum conservation for created and annihilated photons, or equivalently, from phase-matching considerations for multiple interacting beams.
We investigate the possibility of tailoring coherent Raman generated spectra via adaptive wavefront optimization. Our technique combines a spatial light modulator and a spectrometer providing a feedback loop. The algorithm is capable of controlling the Raman generation, producing broader spectra and an improved overall efficiency, and increasing the intensity of high-order sidebands. Moreover, by wavefront optimization we can extend the generated spectra towards the blue spectral region and increase the total power of generated sidebands. Mutual coherence and equal frequency separation of the multiple Raman sidebands are of interest for the synthesis of ultrashort light pulses with the total spectral bandwidth extending over ultraviolet, visible and near-infrared wavelengths.
We study the tilted lens technique for measuring the topological charge (TC) of an optical vortex and investigate how this technique works for optical vortices in mixed orbital angular momentum states (i.e. when one beam contains several components with different values of TC). We present experimental results and theoretical simulations for the measurement of the TC of mixed states. We investigate two different cases: when coherent interference (or addition) between components is present and when it is absent (incoherent addition). We discover that this technique is suitable for measuring the TC of the dominant component of a mixed state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.