Aedes aegypti is the vector responsible for transmitting pathogens that cause various infectious diseases, such as dengue, Zika, yellow fever, and chikungunya, worrying health authorities in the tropics. Due to resistance of mosquitoes to synthetic insecticides, the search for more effective insecticidal agents becomes crucial. The aim of this study was to verify the larvicidal, adulticidal, and anticholinesterase activities of the essential oils of the Illicium verum (EOIV), Pimenta dioica (EOPD), and Myristica fragrans (EOMF) against Ae. aegypti. The essential oils (EOs) were obtained by hydrodistillation and analyzed by gas chromatography-mass spectrometry (GC-MS). The larvicidal and adulticidal activities of EOs were evaluated against third instar larvae and Ae. aegypti adult females, respectively, using the procedures of the World Health Organization (WHO) and the anticholinesterase activity of the EOs by the modified Ellman method. The following major components were identified: (E)-anethole (90.1%) for EOIV, methyl eugenol (55.0%) for EOPD, and sabinene (52.1%) for EOMF. All EOs exhibited larvicidal and adulticidal activity against Ae. aegypti. The highest larval mortality was observed in EOMF with LC = 28.2 μg mL. Adult mortality was observed after 1 (knockdown) and 24 h exposure, with the highest potential established by the EOIV, KC = 7.3 μg mg female and LC = 10.3 μg mg female. EOIV (IC = 4800 μg mL), EOMF (IC = 4510 μg mL), and EOPD (IC = 1320 μg mL) inhibited AChE. EOMF (4130 μg mL) and EOPD (IC = 3340 μg mL) inhibited BChE whereas EOIV showed no inhibition. The EOs were toxic to larvae and adults of Ae. aegypti, as well as being less toxic to humans than the currently used insecticides, opening the possibility of elaboration of a natural, safe, and ecological bioinsecticide for vector control.
International audienceWe consider the problem of improving the performance of OLAP applications in a database cluster (DBC), which is a low cost and effective parallel solution for query processing. Current DBC solutions for OLAP query processing provide for intra-query parallelism only, at the cost of full replication of the database. In this paper, we proposemore efficient distributed database design alternatives which combine physical/virtual partitioning with partial replication.We also propose a new load balancing strategy that takes advantage of an adaptive virtual partitioning to redistribute the load to the replicas. Our experimental validation is based on the implementation of our solution on the SmaQSS DBC middleware prototype. Our experimental results using the TPC-H benchmark and a 32-node cluster show very good speedup
Large scale bioinformatics experiments are usually composed by a set of data flows generated by a chain of activities (programs or services) that may be modeled as scientific workflows. Current Scientific Workflow Management Systems (SWfMS) are used to orchestrate these workflows to control and monitor the whole execution. It is very common in bioinformatics experiments to process very large datasets. In this way, data parallelism is a common approach used to increase performance and reduce overall execution time. However, most of current SWfMS still lack on supporting parallel executions in high performance computing (HPC) environments. Additionally keeping track of provenance data in distributed environments is still an open, yet important problem. Recently, Hydra middleware was proposed to bridge the gap between the SWfMS and the HPC environment, by providing a transparent way for scientists to parallelize workflow executions while capturing distributed provenance. This paper analyzes data parallelism scenarios in bioinformatics domain and presents an extension to Hydra middleware through a specific cartridge that promotes data parallelism in bioinformatics workflows. Experimental results using workflows with BLAST show performance gains with the additional benefits of distributed provenance support.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.