The Amazon biome is under severe threat due to increasing deforestation rates and loss of biodiversity and ecosystem services while sustaining a high burden of neglected tropical diseases. Approximately two thirds of this biome are located within Brazilian territory. There, socio-economic and environmental landscape transformations are linked to the regional agrarian economy dynamics, which has developed into six techno-productive trajectories (TTs). These TTs are the product of the historical interaction between Peasant and Farmer and Rancher practices, technologies and rationalities. This article investigates the distribution of the dominant Brazilian Amazon TTs and their association with environmental degradation and vulnerability to neglected tropical diseases. The goal is to provide a framework for the joint debate of the local economic, environmental and health dimensions. We calculated the dominant TT for each municipality in 2017. Peasant trajectories (TT1, TT2, and TT3) are dominant in ca. fifty percent of the Amazon territory, mostly concentrated in areas covered by continuous forest where malaria is an important morbidity and mortality cause. Cattle raising trajectories are associated with higher deforestation rates. Meanwhile, Farmer and Rancher economies are becoming dominant trajectories, comprising large scale cattle and grain production. These trajectories are associated with rapid biodiversity loss and a high prevalence of neglected tropical diseases, such as leishmaniasis, Aedes-borne diseases and Chagas disease. Overall, these results defy simplistic views that the dominant development trajectory for the Amazon will optimize economic, health and environmental indicators. This approach lays the groundwork for a more integrated narrative consistent with the economic history of the Brazilian Amazon.
We surveyed ant fauna in the leaf litter in an Atlantic Semideciduous forest in the State Park of Rio Doce (PERD). The work aimed to produce basic information about habitat effects on diversity, as well as about how the ant fauna in a such buffered forest habitat, as the litter layer, could respond the climate variation in a short and long term. We sampled two years in two distinct forest physiognomies, which respond to different geomorphologic backgrounds, in dry and rainy seasons. Species composition, richness and abundance of these forests were distinct. However, both forests hosted similar numbers of rare and specialized, habitat demanding species, thus suggesting both are similarly well preserved, despite distinct physiognomies. However, the lower and more open forest was, more susceptible to dry season effects, showing a steeper decline in species numbers in such season, but similar numbers in the wet seasons. The pattern varied between years, which corroborates the hypothesis of a strongly variable community in response to subtle climatic variation among years. The present results are baselines for future long term monitoring projects, and could support protocols for early warnings of global climatic changes effects on biodiversity.
1. Forest responses to changes in drought frequency is a critical matter for the future of Amazon forests under climate change, but equally important is the much less studied response to large floods, which may also increase tree mortality and change forest functionality. Further, forest vulnerability to flood is being exacerbated by large hydroelectric dams on Amazon rivers that put upland environments not adapted to flood at unique risk.2. To address this critical knowledge gap, we evaluated the effects of the extreme 2014 rainfall coupled with the newly constructed Jirau hydroelectric dam on tree survival and forest functionality, in the upper Madeira River basin. We used surveys of campinarana white-sand forests (stems >1 cm in seven 1 ha plots) conducted before and after the extreme flood to test trait-based ecological theory predictions of the impact of flood on overall community function.3. We found that flooding increased mortality by nearly five-fold (from 3.2% to 15.1%), mostly in smaller trees. This large mortality induced significant and consistent shifts in community function, towards species with conservative life strategies: direct comparison of trait differences between surviving and dying trees showed that survivors had smaller, high density stomata, and higher leaf dry matter content, wood density and root tissue density (RTD). Size and density of stomata and RTD were the most important predictors of species mortality rates. Synthesis and applications.Although focused on a single event in one type of forest, this work highlights the general importance, and need for further study, of interaction between climate change and mega-dams in Amazon forests. In particular, we expect that continued expansion of hydroelectric dams in Amazonia will likely intensify the impact of large floods on forests made newly vulnerable by these dams, with substantial effect on future forest functionality in expanded floodplain areas across the Basin. Hence, these interaction analyses should be required in the Brazilian legal instruments such as the environmental impact assessments and its accompanying Environmental Impacts Reports for large infrastructure projects in Amazon.in the functional composition of these forests towards more slowgrowing plants, which, on the one hand, would make campinaranas more resilient in the event of new floods, but could, on the other hand, decrease its short-term capacity for carbon sequestration besides lowering forest richness and diversity. We herein followed the K E Y W O R D S dams, flood tolerance, functional traits, global warming, precipitation anomaly, root tissue density, stomata density, tree mortality | 2643
A rapid and reliable identification of the country of origin of protected timbers is one of the measures for combating illegal logging. Mahogany (Swietenia macrophyllaKing) trees are distributed from Mexico to Bolivia and the Brazilian Amazon and are included in Appendix II of the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). Near-infrared spectroscopy (NIRS) has been proven to be a promising technique for calibration based and rapid species identification. There are only a few studies concerning the origin determination of mahogany wood. The present study is dedicated to trace back mahogany wood from Bolivia, Brazil, Guatemala, Mexico and Peru by means of two different handheld NIR spectrometers. The spectra were obtained directly from the wood samples, and soft independent modeling of class analogy (SIMCA) and partial least squares for discriminant analysis (PLS-DA) models were developed for data evaluation. The SIMCA model was efficient and 67–100% and 70–98% of the origins were identified based on the spectral ranges from 1595 to 2396 nm and 950 to 1650 nm, respectively. The best results were obtained by the PLS-DA approach, in which the efficiency rates (EFR) vary from 90 to 100% with both spectrometers. In summary, both instruments were highly effective and are suitable for preliminary identification of the country of origin for mahogany wood.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.