HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
In this paper we focus on a class of linear Hawkes processes with general immigrants. These are counting processes with shot-noise intensity, including self-excited and externally excited patterns. For such processes, we introduce the concept of the age pyramid which evolves according to immigration and births. The virtue of this approach that combines an intensity process definition and a branching representation is that the population age pyramid keeps track of all past events. This is used to compute new distribution properties for a class of Hawkes processes with general immigrants which generalize the popular exponential fertility function. The pathwise construction of the Hawkes process and its underlying population is also given.
In this paper, we propose a multivariate Hawkes framework for modelling and predicting cyber attacks frequency. The inference is based on a public data set containing features of data breaches targeting the US industry. As a main output of this paper, we demonstrate the ability of Hawkes models to capture self-excitation and interactions of data breaches depending on their type and targets. In this setting, we detail prediction results providing the full joint distribution of future cyber attacks times of occurrence. In addition, we show that a non-instantaneous excitation in the multivariate Hawkes model, which is not the classical framework of the exponential kernel, better fits with our data. In an insurance framework, this study allows to determine quantiles for number of attacks, useful for an internal model, as well as the frequency component for a data breach guarantee.
This paper analyses cause-of-death mortality changes and its impacts on the whole population evolution. The study combines cause-of-death analysis and population dynamics techniques. Our aim is to measure the impact of cause-of-death reduction on the whole population age structure, and more specifically on the dependency ratio which is a crucial quantity for pay-as-yougo pension systems. Whereas previous studies on causes of death focused on mortality indicators such as survival curves or life expectancy, our approach provides additional information by including birth patterns. As an important conclusion, our numerical results based on French data show that populations with identical life expectancies can present important differences in their age pyramid resulting from different cause-specific mortality reductions. Sensitivities to fertility level and population flows are also given.
This paper demonstrates the efficiency of using Edgeworth and Gram-Charlier expansions in the calibration of the Libor Market Model with Stochastic Volatility and Displaced Diffusion (DD-SV-LMM). Our approach brings together two research areas; first, the results regarding the SV-LMM since the work of Wu and Zhang (2006), especially on the moment generating function, and second the approximation of density distributions based on Edgeworth or Gram-Charlier expansions. By exploring the analytical tractability of moments up to fourth order, we are able to perform an adjustment of the reference Bachelier model with normal volatilities for skewness and kurtosis, and as a by-product to derive a smile formula relating the volatility to the moneyness with interpretable parameters. As a main conclusion, our numerical results show a 98% reduction in computational time for the DD-SV-LMM calibration process compared to the classical numerical integration method developed by Heston (1993).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.