According to the literature regarding visual saliency, observers may exhibit considerable variations in their gaze behaviors. These variations are influenced by aspects such as cultural background, age or prior experiences, but also by features in the observed images. The dispersion between the gaze of different observers looking at the same image is commonly referred as inter-observer congruency (IOC). Predicting this congruence can be of great interest when it comes to study the visual perception of an image. In this paper, we introduce a new method based on deep learning techniques to predict the IOC of an image. This is achieved by first extracting features from an image through a deep convolutional network. We then show that using such features to train a model with a shallow network regression technique significantly improves the precision of the prediction over existing approaches.
In the process of making a movie, directors constantly care about where the spectator will look on the screen. Shot composition, framing, camera movements or editing are tools commonly used to direct attention. In order to provide a quantitative analysis of the relationship between those tools and gaze patterns, we propose a new eye-tracking database, containing gaze pattern information on movie sequences, as well as editing annotations, and we show how state-of-the-art computational saliency techniques behave on this dataset. In this work, we expose strong links between movie editing and spectators scanpaths, and open several leads on how the knowledge of editing information could improve human visual attention modeling for cinematic content. The dataset generated and analysed during the current study is available at https://github. com/abruckert/eye_tracking_filmmaking
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.