Euschistus heros (Fabricius, 1798) and Dichelops furcatus (Fabricius, 1775) are key pests of agricultural crops in Brazil. Chemical insecticides are the main control tactic used against these species. Here, we investigated the susceptibility of E. heros and D. furcatus from distinct regions to the mains insecticides used to stink bugs control in Brazil. Field populations of these species were collected throughout the 2017–2019 crop seasons and insects were exposed to insecticides in dip-test bioassays using fresh green bean pods. Populations of E. heros exhibited low variation in the susceptibility to acephate (LC50 = 172.2 to 1,008 µg a.i. per ml), and thiamethoxam (LC50 = 28.8 to 433.9 µg a.i. per ml); resistance ratios were less than 5.9- and 15.1-fold, respectively. In contrast, these populations had higher variation in the susceptibility to bifenthrin (LC50 = 26.7 to 636.1 µg a.i. per ml) and lambda-cyhalothrin (LC50 = 10.0 to 636.1 µg a.i. per ml); resistance ratios reaching 23.8- and 63.6-fold, respectively. Susceptibility monitoring data indicated a higher susceptibility of E. heros to the manufacturers field-recommended rates of acephate, lambda-cyhalothrin + thiamethoxam, and bifenthrin + acetamiprid than lambda-cyhalothrin. Populations of D. furcatus exhibited low variation in the susceptibility to acephate (LC50 = 219.2 to 614.1 µg a.i. per ml), bifenthrin (LC50 = 62.8 to 197.4 µg a.i. per ml), and lambda-cyhalothrin (LC50 = 189.5 to 2,538 µg a.i. per ml); resistance ratios were less than 13.4-fold. In summary, populations of E. heros are less susceptible to pyrethroids, while populations of D. furcatus have similar susceptibility to the insecticides evaluated.
The Neotropical brown stink bug, Euschistus heros (F.), and the soybean looper, Chrysodeixis includens (Walker), are key pests of soybean in South America. Low susceptibility to pyrethroids has been reported for both species in Brazil. Here, we evaluate the addition of synergistic compounds piperonyl butoxide (PBO) and diethyl maleate (DEM) to manage E. heros and C. includens with resistance to λ-cyhalothrin and bifenthrin. The LD50 of technical grade and commercial products containing λ-cyhalothrin and bifenthrin decreased against field-collected E. heros exposed to PBO and DEM relative to unexposed insects; synergistic ratios up to 4.75-fold. The mortality also increased when E. heros were exposed to commercial formulations containing λ-cyhalothrin (from 4 to 44%) and bifenthrin (from 44 to 88%) in the presence of synergists. There was also a higher susceptibility of field-collected C. includens to technical grade λ-cyhalothrin when PBO was used; synergistic ratio of 5.50-fold. High lethally of technical grade λ-cyhalothrin was also verified in the presence of PBO, with mortality increasing from 6 to 57%. Our findings indicate the potential utility of synergists in reversing the resistance to λ-cyhalothrin and bifenthrin in E. heros and C. includens and suggest a significant role of metabolic mechanisms underlying the detoxification of both pyrethroids.
Background: Chemical control is commonly used against Euschistus heros (F.) and Chrysodeixis includens (Walker) in soybean fields in South America. However, previous studies reported that these pests have reduced susceptibility to pyrethroids in Brazil. On this basis, we developed and evaluated nanoencapsulated-based bifenthrin (BFT) and ⊗-cyhalothrin (LAM) with the synergists piperonyl butoxide (PBO) and diethyl maleate (DEM) for insect resistance management (IRM).Results: Nanoformulations of BFT and LAM with PBO and DEM presented good physical-chemical characteristics and were stable. The spherical morphology of all systems and the encapsulation efficiency in nanostructured lipid carriers did not change when synergists were added. Nanoencapsulated BFT with DEM applied topically increased the susceptibility of E. heros to BFT by 3.50-fold. Similarly, nanoencapsulated BFT and LAM with PBO in diet-overlay bioassays increased the susceptibility of C. includens to both chemicals by up to 2.16-fold. Nanoencapsulated BFT and LAM with synergists also improve control efficacy of both species, causing higher mortality than commercial products containing these chemistries.Conclusions: It is possible to develop nanoencapsulated-based formulations of BFT and LAM with PBO or DEM, and these nanoformulations have the potential to improve control of E. heros and C. includens with recognized low susceptibility to pyrethroids. This study provides updates for designing new insecticide formulations for IRM.
Genetically modified (GM) soybeans expressing Cry1A.105/Cry2Ab2/Cry1Ac (event MON 87701 × MON 89788 × MON 87751 × MON 87708) and Cry1Ac (event MON 87701 × MON 89788) from Bacillus thuringiensis Berliner (Bt) are valuable technologies for managing key lepidopteran pests of soybean in South America, but do not provide stand-alone protection against Spodoptera species. Here, we evaluated the use of these Bt soybeans and their integration with insecticides for managing Spodoptera species. Cry1A.105/Cry2Ab2/Cry1Ac soybean provided reasonable levels of protection against S. cosmioides, S. albula, and S. eridania. However, S. frugiperda had higher survival on this Bt soybean, and Cry1Ac soybean showed low lethality against all species evaluated. Spodoptera larvae that survived on Bt and non-Bt soybean showed comparable susceptibility to flubendiamide and thiodicarb in diet-overlay bioassays. Regardless of soybean plant type, the field doses of flubendiamide and thiodicarb were effective in controlling surviving Spodoptera larvae. We conclude that Cry1A.105/Cry2Ab2/Cry1Ac soybean is effective in controlling S. cosmioides and S. albula, and also has reasonable control of S. eridania, but not S. frugiperda. Cry1Ac soybean provided poor control of all Spodoptera species. Nonetheless, Spodoptera larvae surviving on both Bt and non-Bt soybean were controlled by flubendiamide and thiodicarb. Thus, integrated control tactics would provide effective management of Spodoptera species in Bt soybean fields in South America.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.