We present a direct method to measure fission product yield distributions (FPY) and isomeric yield ratios (IYR) for spontaneous fission (SF) fragments. These physical properties are of utmost importance to the understanding of basic nuclear physics, the astrophysical rapid neutron capture process ('r process') of nucleosynthesis, neutron star composition, and nuclear reactor safety. With this method, fission fragments are produced by spontaneous fission from a source that is mounted in a cryogenic stopping cell (CSC), thermalized and stopped within it, and then extracted and transported to a multiple-reflection time-of-flight mass-spectrometer (MR-TOF-MS). We will implement the method at the FRS Ion Catcher (FRS-IC) at GSI (Germany), whose MR-TOF-MS relative mass accuracy (~ 10-7) and resolving power (~ 600,000 FWHM) are sufficient to separate all isobars and numerous isomers in the fission fragment realm. The system's essential element independence and its fast simultaneous mass measurement provide a new direct way to measure isotopic FPY distributions, which is complementary to existing methods. It will enable nuclide FPY measurements in the high fission peak, which is hardly accessible by current techniques. The extraction time of the CSC, tens of milliseconds, enables a direct measurement of independent fission yields, and a first study of the temporal dependence of FPY distributions in this duration range. The ability to resolve isomers will further enable direct extraction of numerous IYRs while performing the FPY measurements. The method has been recently demonstrated at the FRS-ICr for SF with a 37 kBq 252Cf fission source, where about 70 different fission fragments have been identified and counted. In the near future, it will be used for systematic studies of SF with a higher-activity 252Cf source and a 248Cm source. The method can be implemented also for neutron induced fission at appropriate facilities.
No abstract
We propose a new method for integrating metasurfaces in optical design using semi-analytical modeling of dielectric nanostructures. The latter computes the output phase of an electric field incident on the metasurface, allowing their use with ray-tracing software. This tool provides a method to use metasurfaces in optical systems while using built-in optimization processes to avoid time-consuming computation. To demonstrate the applicability and versatility of our method, we present variations of a triplet composed of refractive elements and a metasurface. For each of the systems, similar optical performances are achieved. Our unique and innovative approach to joining metasurfaces and ray-tracing has the potential to promote the design of innovative systems by exploiting the richness of metasurfaces and the functionality of conventional lens design software.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.