Although the biological importance of post-transcriptional RNA modifications in gene expression is widely appreciated, methods to directly detect their introduction during RNA biosynthesis are rare and do not easily provide information on the temporal nature of events. Here, we introduce the application of NMR spectroscopy to observe the maturation of tRNAs in cell extracts. By following the maturation of yeast tRNA Phe with time-resolved NMR measurements, we show that modifications are introduced in a defined sequential order, and that the chronology is controlled by cross-talk between modification events. In particular, we show that a strong hierarchy controls the introduction of the T54, Ψ55 and m 1 A58 modifications in the T-arm, and we demonstrate that the modification circuits identified in yeast extract with NMR also impact the tRNA modification process in living cells. The NMR-based methodology presented here could be adapted to investigate different aspects of tRNA maturation and RNA modifications in general.
Although the biological importance of post-transcriptional RNA modifications in gene expression is widely appreciated, methods to directly detect the introduction of these modifications during RNA biosynthesis are rare and do not easily provide information on the temporal nature of events. Here we introduce the application of NMR spectroscopy to observe the maturation of tRNAs in cell extracts.By following the maturation of yeast tRNA Phe with time-resolved NMR measurements, we found that modifications are introduced in a defined sequential order, and that the chronology is controlled by cross-talk between modification events. In particular, we uncovered a strong hierarchy in the introduction of the T54, Ψ55 and m 1 A58 modifications in the T-arm, and demonstrate that the modification circuits identified in yeast extract with NMR also impact the tRNA modification process in living cells. The NMR-based methodology presented here could be adapted to investigate different aspects of tRNA maturation and RNA modifications in general.
Transfer RNAs (tRNAs) are heavily decorated with post-transcriptional modifications during their biosynthesis. To fulfil their functions within cells, tRNAs undergo a tightly controlled biogenesis process leading to the formation of mature tRNAs. In particular, the introduction of post-transcriptional modifications in tRNAs is controlled and influenced by multiple factors. In turn, tRNA biological functions are often modulated by their modifications. Although modifications play essential roles in tRNA biology, methods to directly detect their introduction during tRNA maturation are rare and do not easily provide information on the temporality of modification events. To obtain information on the tRNA maturation process, we have developed a methodology, using NMR as a tool to monitor tRNA maturation in a non-disruptive and continuous fashion in cellular extracts. Here we report the 1 H, 15 N chemical shift assignments of imino groups in three forms of the yeast tRNA Phe differing in their modification content. These assignments are a prerequisite for the time-resolved NMR monitoring of yeast tRNA Phe maturation in yeast extracts.To cite this article: M. Catala et al. Biomolecular NMR Assignments (2020), in press. This is a postprint of an article published in Biomolecular NMR Assignments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.