The magnetization MH(T) and the specific heat capacity cP,H(T) of the ErCo2 intermetallic compound were measured in the temperature range 5 - 100 K and in 0, 7 or 14 T applied field, respectively. A clear first-order phase transition is found at the magnetic ordering of the Er sublattice. While for order-disorder transitions in simple ferromagnets there is a good agreement between magnetocaloric performance predicted on the basis of magnetization measurements compared to calorimetric measurements, it is necessary to investigate whether the agreement is still present for materials with more complex transitions (e.g. order - order, metamagnetic, first order etc). From the magnetization data the magnetic entropy change at the transition was calculated using the Maxwell relations. From the cP,H(T) measurements both the magnetic entropy change and the adiabatic temperature change were calculated and compared to values obtained from MH(T) and to the values calculated by the usual approximative expressions. The agreement is less good than in the case of second-order phase transitions. The discrepancy is interpreted in terms of the theory of first-order/metamagnetic transitions showing that the boundary conditions used in the derivation of the approximative formulae for simple ferromagnetic materials are not appropriate for more complex transitions as in ErCo2.
Deoxygenation of the diol groups in rings A and D of neomycin in combination with the introduction of an N1-(L)-HABA group in the 2-deoxystreptamine subunit (ring B) leads to a novel and potent antibiotic (1) with activity against strains of S. aureus carrying known aminoglycoside resistance determinants, as well as against an extended panel of Methicillin-resistant S. aureus isolates (n = 50). Antibiotic 1 displayed >64 fold improvement in MIC 50 and MIC 90 against this MRSA collection when compared to the clinically relevant aminoglycosides amikacin and gentamicin. The synthesis was achieved in six steps and 15% overall yield.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.