The objective of the current research is to evaluate and compare the corrosion protection efficiency of the microcapsules containing tung oil and copaiba oil using stereoscopic images, electrochemical tests, open circuit potential (OCP), and polarization curves (Tafel analysis). Carbon steel plates were painted with three different coating systems: (a) a coating system with an automotive primer which served as the control, (b) a coating system with microcapsules containing 3% tung oil, and (c) a coating system with microcapsules containing 3% copaiba oil. A crosscut was performed using a scalpel on the coating surfaces to promote the release of the oils, and after drying, electrochemical cells were assembled using electrolyte 3% NaCl. From OCP analyses, it was verified that the coating system containing tung oil loaded microcapsules obtained more positive final values than the control system and the coating system containing copaiba oil loaded microcapsules. The stereoscope images corroborate the OCP results, and the polarization curve analyses also indicated that the microcapsules containing tung oil offer better corrosion protection than the other systems studied.
Layered double hydroxides (LDH) are lamellar structures with positively charged laminates and charge-compensating interlayer anions. The ion-exchange capacity of LDHs makes them as promising hosts for corrosion inhibitor anions with stimulus-responsive release and self-healing anticorrosion. In the current work, LDHs loaded with two different corrosion inhibitors (nitrogen oxides and benzotriazole) were evaluated for their ion-exchange capacity and autonomic protection against corrosion on carbon steel. Studies on nitrogen oxide-loaded LDH (NOx-LDH) showed that nitrogen oxides were successfully intercalated in LDH structure, which were released in chloride media. Open Circuit Potential (OCP) results showed that NOx-LDH extract shifted OCP to nobler values, indicating the protection of metal. For benzotriazole-loaded LDH (BTZ-LDH), the results indicated the presence of benzotriazole in the structure, but its release was not observed. OCP results showed no significant increase of carbon steel protection, corroborating with the conclusion that benzotriazole ions did not migrate to metal surface. Considering these results, the insertion of NOx-LDH in an automotive primer was proceeded, under three different concentrations (0.2. 1.0, and 3.0%). Electrochemical impedance spectroscopy (EIS) showed that the more effective NOx-LDH concentration on corrosion delay was 0.2%, which better balanced protection level conferred by LDH with a possible loss on effectiveness of coating due to increase in porosity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.