Starting from a data set consisting of input-output measurements of a dynamical process, this paper presents a training procedure for a specifically control-oriented model. The considered dynamic model adopts a particular neural statespace representation: its structure guarantees its linearizability by state feedback. Moreover, the linearizing control law follows trivially from the parameters of the learned model. The method relies on a parameterized continuous-time neural state-space model whose structure is inspired from well-known exact linearization. The feasibility and efficiency of the approach is illustrated on a nonlinear identification benchmark, namely the Silverbox one. The quality of learning and linearizing feature of the control design are validated on two nonlinear models by comparing the input-output behavior of each closed-loop and its best linear approximation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.