The conception of cheaper and greener electrode materials is critical for lithium (Li)‐ion battery manufacturers. In this study, a by‐product of the carbothermic reduction of SiO2 to Si, containing 65 wt% Si, 31 wt% SiC, and 4 wt% C, is evaluated as raw material for the production of high‐capacity anodes for Li‐ion batteries. After 20 h of high‐energy ball milling, C is fully converted to SiC and a micrometric powder (D50 ∼1 μm) is obtained in which submicrometric SiC inclusions are embedded in a nanocrystalline/amorphous Si matrix. This material is able to maintain a capacity >1000 mAh g−1 (>3 mAh cm−2) over 100 cycles. No crystalline Li15Si4 phase is formed upon cycling as shown from the differential dQ/dV curves. The good mechanical resiliency of the electrode is evidenced by monitoring its morphological changes from sequential focused ion beam scanning electron microscopy analyses. However, a progressive and irreversible increase in the electrode mass and thickness is observed over cycling (reaching 125% and 60% after 200 cycles, respectively), which is mainly attributed to the accumulation of solid electrolyte interphase products in the electrode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.