Objectives Distinguishing benign from malignant orbital lesions remains challenging both clinically and with imaging, leading to risky biopsies. The objective was to differentiate benign from malignant orbital lesions using radiomics on 3 T magnetic resonance imaging (MRI) examinations. Materials and Methods This institutional review board–approved prospective single-center study enrolled consecutive patients presenting with an orbital lesion undergoing a 3 T MRI prior to surgery from December 2015 to July 2019. Radiomics features were extracted from 6 MRI sequences (T1-weighted images [WIs], DIXON-T2-WI, diffusion-WI, postcontrast DIXON-T1-WI) using the Pyradiomics software. Features were selected based on their intraobserver and interobserver reproducibility, nonredundancy, and with a sequential step forward feature selection method. Selected features were used to train and optimize a Random Forest algorithm on the training set (75%) with 5-fold cross-validation. Performance metrics were computed on a held-out test set (25%) with bootstrap 95% confidence intervals (95% CIs). Five residents, 4 general radiologists, and 3 expert neuroradiologists were evaluated on their ability to visually distinguish benign from malignant lesions on the test set. Performance comparisons between reader groups and the model were performed using McNemar test. The impact of clinical and categorizable imaging data on algorithm performance was also assessed. Results A total of 200 patients (116 [58%] women and 84 [42%] men; mean age, 53.0 ± 17.9 years) with 126 of 200 (63%) benign and 74 of 200 (37%) malignant orbital lesions were included in the study. A total of 606 radiomics features were extracted. The best performing model on the training set was composed of 8 features including apparent diffusion coefficient mean value, maximum diameter on T1-WIs, and texture features. Area under the receiver operating characteristic curve, accuracy, sensitivity, and specificity on the test set were respectively 0.869 (95% CI, 0.834–0.898), 0.840 (95% CI, 0.806–0.874), 0.684 (95% CI, 0.615–0.751), and 0.935 (95% CI, 0.905–0.961). The radiomics model outperformed all reader groups, including expert neuroradiologists (P < 0.01). Adding clinical and categorizable imaging data did not significantly impact the algorithm performance (P = 0.49). Conclusions An MRI radiomics signature is helpful in differentiating benign from malignant orbital lesions and may outperform expert radiologists.
Angiotropic lymphoma can present as a vascular disease in the central nervous system. The patient described in this report had a sudden pain in the region of the right superficial peroneal nerve and a nerve biopsy showed tumoral cells in the lumen of most small blood vessels. This pathology, first described in the skin as malignant angioendotheliomatosis, can be compared with the occurrence of multiple emboli in the vasa nervorum. In recent cases, tumoral markers have evidenced a lymphomatous origin, generally of the B type.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.