Purine nucleobases are excellent ligands for metal ions, forming normally coordinative Werner-type bonds by utilizing the N donor atoms of the nucleobase skeleton. Here we show that purines such as 8-chlorocaffeine and 8-bromo-9-methyladenine react with [Pt(PPh3)4] under oxidative addition of the C(8)-halogen bond to the metal center. The resulting Pt(II) complexes feature a C(8)-bound ylidene ligand. Protonation of the ylidene at the N(7/9)-atom yields complexes bearing a protic N-heterocyclic carbene ligand derived from the purine base with an NMe,NH-substitution pattern.
Treatment of the metallacycle [UN*2(N,C)] [N* = N(SiMe3)2; N,C = CH2SiMe2N(SiMe3)] with [HNEt3][BPh4], [HNEt3]Cl, and [pyH][OTf] (OTf = OSO2CF3) gave the cationic compound [UN*3][BPh4] (1) and the neutral complexes [UN*3X] [X = Cl (3), OTf (4)], respectively. The dinuclear complex [{UN*(μ-N,C)(μ-OTf)}2] (5) and its tetrahydrofuran (THF) adduct [{UN*(N,C)(THF)(μ-OTf)}2] (6) were obtained by thermal decomposition of 4. The successive addition of NEt4CN or KCN to 1 led to the formation of the cyanido-bridged dinuclear compound [(UN*3)2(μ-CN)][BPh4] (7) and the mononuclear mono- and bis(cyanide) complexes [UN*3(CN)] (2) and [M][UN*3(CN)2] [M = NEt4 (8), K(THF)4 (9)], while crystals of [K(18-crown-6)][UN*3(CN)2] (10) were obtained by the oxidation of [K(18-crown-6)][UN*3(CN)] with pyridine N-oxide. The THF adduct of 1, [UN*3(THF)][BPh4], and complexes 2-7, 9 and 10 were characterized by their X-ray crystal structure. In contrast to their U(III) analogues [NMe4][UN*3(CN)] and [K(18-crown-6)]2[UN*3(CN)2] in which the CN anions are coordinated to the metal center via the C atom, complexes 2 and 9 exhibit the isocyanide U-NC coordination mode of the cyanide ligand. This U(III)/U(IV) differentiation has been analyzed using density functional theory calculations. The observed preferential coordinations are well explained considering the electronic structures of the different species and metal-ligand bonding energies. A comparison of the different quantum descriptors, i.e., bond orders, NPA/QTAIM data, and energy decomposition analysis, has allowed highlighting of the subtle balance between covalent, ionic, and steric factors that govern the U-CN/NC bonding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.