We have investigated the rheological properties of lyotropic liquid crystals (LCs) formed by self-assembled neutral lipids and water, their relationship with the topology of the structure, and their dependence on temperature and water content. The phase diagram of a representative monoglyceride-water system, determined by combining cross-polarized optical microscopy and small-angle X-ray scattering (SAXS), included four structures: lamellar, hexagonal, gyroid bicontinuous cubic (Ia3d), and double diamond bicontinuous cubic (Pn3m), as well as several regions of two-phase coexistence of some of the above structures. Rheology in the linear viscoelastic regime revealed a specific signature that was characteristic of the topology of each structure considered. The order-order transitions lamellar-to-cubic and cubic-to-hexagonal, as well as the order-disorder transitions from each LC to an isotropic fluid, were easily identified by following the development of the storage and loss moduli, G' and G'', respectively. The viscoelastic properties of both bicontinuous cubic phases were shown to be strongly frequency-dependent, following a pseudo-Maxwell behavior, with multiple relaxation times. Cubic-to-cubic transitions were nicely captured by scaling the longest relaxation time, tau, with either temperature or water volume fraction. Therefore, the set of the three main parameters used to establish the rheological behavior of the structure, that is, G', G'', and relaxation time, tau, constitutes a consistent ensemble to identify the structures of the liquid crystal. Finally, relaxation spectra, extracted for all liquid crystalline phases, allowed an additional possible identification criterion of the various structures considered.
We report on the order-to-order transitions of lyotropic liquid crystals formed by self-assembled monogylcerides and water in the presence of polysaccharides of various molecular weights. The phase diagram of monoglyceride-water-polysaccharide systems, their morphology, and the topology of liquid crystalline structures were determined by combining optical cross-polarization, oscillatory shear rheometry, and small-angle X-ray scattering. The presence of hydrophilic mono-, oligo-, and polysaccharides in the water domains of liquid crystalline phases resulted in a general decrease of the cubic-to-hexagonal transition temperature. Provided that the sugar could fit within the water channels, the decrease was observed to be dependent on the polysaccharide concentration but independent of its molecular weight. For isotropic bicontinuous cubic phases, monomeric sugars such as glucose were reported to shrink the lattice parameter of the structure without inducing phase transitions. However, when a polymeric form of glucose was used, such as dextran, transitions from the gyroidal Ia3d cubic phase to double diamond Pn3m cubic phases were observed at well-defined molecular weights of polysaccharide. These results were interpreted in terms of size exclusions of polymer sugars by the water domains of the liquid crystal phases as well as the different topologies of water channels. Molecular dynamics simulations of polysaccharides in the water environment were performed to support these findings.
The dilatational rheological properties of cross-linked protein layers adsorbed at the oil-water interface were investigated with help of a modified drop tensiometer allowing successive replacements of the external phase. This setup enables one to perform cross-linking reactions at the interface only, that is, without any contact between the cross-linking agent and protein molecules in solution, under continuous monitoring of the interfacial tension. The mechanical properties of the resulting interface were investigated with dilatational large strain experiments. Measured rheological properties were related to the expected stability of an emulsion against disproportionation by considering the ratio of the interfacial elasticity to the interfacial tension. In an attempt to increase this ratio to improve the resistance against disproportionation, experiments were performed with densified protein layers obtained via reduction of the droplet area prior to cross linking. To highlight the influence of the protein morphology on the dilatational rheological properties of the cross-linked adsorbed layers, experiments were performed with random coil (beta-casein) as well as globular (beta-lactoglobulin) proteins. Glutaraldehyde was used as a cross-linking agent. Experiments were performed at 55 degrees C and pH 7.0 in 20 mM imidazole buffer for later comparison with enzymatically cross-linked adsorbed protein layers. The present work demonstrated substantial qualitative and quantitative differences in the interfacial rheological properties of cross-linked random coil and globular proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.