Abstract‘Rauisuchia’ comprises Triassic pseudosuchians that ranged greatly in body size, locomotor styles and feeding ecologies. Our concept of what constitutes a rauisuchian is changing as a result of discoveries over the last 15 years. New evidence has shown that rauisuchians are probably not a natural (monophyletic) group, but instead are a number of smaller clades (e.g. Rauisuchidae, Ctenosauriscidae, Shuvosauridae) that may not be each other's closest relatives within Pseudosuchia. Here, we acknowledge that there are still large gaps in the basic understanding in the alpha-level taxonomy and relationships of these groups, but good progress is being made. As a result of renewed interest in rauisuchians, an expanding number of recent studies have focused on the growth, locomotor habits, and biomechanics of these animals, and we review these studies here. We are clearly in the midst of a renaissance in our understanding of rauisuchian evolution and the continuation of detailed descriptions, the development of explicit phylogenetic hypotheses, and explicit palaeobiological studies are essential in advancing our knowledge of these extinct animals.
The early evolution of lepidosaurs is marked by an extremely scarce fossil record during the Triassic. Importantly, most Triassic lepidosaur specimens are represented by disarticulated individuals from high energy accretion deposits in Laurasia, thus greatly hampering our understanding of the initial stages of lepidosaur evolution. Here, we describe the fragmentary remains of an associated skull and mandible of Clevosaurus hadroprodon sp. nov., a new taxon of sphenodontian lepidosaur from the Late Triassic (Carnian; 237–228 Mya) of Brazil. Referral to Sphenodontia is supported by the combined presence of a marginal dentition ankylosed to the apex of the dentary, maxilla, and premaxilla; the presence of ‘secondary bone’ at the bases of the marginal dentition; and a ventrally directed mental process at the symphysis of the dentary. Our phylogenetic analyses recover Clevosaurus hadroprodon as a clevosaurid, either in a polytomy with the Late Triassic to Early Jurassic Clevosaurus and Brachyrhinodon (under Bayesian inference), or nested among different species of Clevosaurus (under maximum parsimony). Clevosaurus hadroprodon represents the oldest known sphenodontian from Gondwana, and its clevosaurid relationships indicates that these sphenodontians achieved a widespread biogeographic distribution much earlier than previously thought.
Prestosuchus chiniquensis is an extinct species of terrestrial archosaur from the Middle Triassic Epoch restricted to southern Brazil. In this paper the thigh musculature of P. chiniquensis is reconstructed based on a well-preserved specimen and on myological descriptions of extant birds and crocodylians. Among the 16 analysed muscular groups, 13 were recognized as present and homologous to both extant groups of archosaurs, and two only to the crocodylian line of archosaurs, so that 15 muscular groups were reconstructed in the fossil specimen. Morphological particularities of the pelvic girdle and the hindlimbs of P. chiniquensis gave a distinct arrangement for the muscular origin and insertion sites, leading to different lines of action and functions when compared with extant archosaurs. The comparison between extinct and extant archosaurs showed a basal condition sustained in some aspects, such as the morphology of the femur and the flexion of the knee, although other aspects were considered as derived, such as the morphology of the pubis and ischium, and their associated muscle origin locations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.