The focus of this paper is to establish a characterisation method for seven polyamide (PA) grades to determine the major material to manufacture an automotive worm gear. The composite properties were measured according to the worm gear loadings: tensile strength, Young's modulus, abrasion and impact resistance. They were also correlated to the PA moisture absorption and its glass fibre (GF) reinforcement. The data from mechanical tests were applied in the finite element analysis (FEA) using the von Mises stress criterion. Before the rig tests of the PA worm gears, the injection process was evaluated, through the capillary rheometry. A higher difficulty to process PA 6/6 30% GF was found, due to its lower apparent viscosity. In the end, the influence of moisture absorption was as decisive to the gear's material selection as the GF to the pinion. Thus, the PAs with the best performance were: PA 6 with 30% GF (gear) and with PA 60% GF (pinion).
International standards and original equipment manufacturers (OEM) procedures usually define wear tests in organic materials focusing on the brake lining temperature. The current work presents an approach combining different brake pads temperatures, vehicle speeds, and brake pressures for analyzing their effects and interactions in the friction material wear through dynamometer tests. Therefore, mechanical properties were evaluated, where internal shear strength had the most significant influence on wear; furthermore, compressive strength and flexural strength did not considerably change with variations on the test parameters. A 23 factorial design of the experiment (DOE) showed that the brake temperature alone was not the main factor for increasing wear, and the primary wear mechanism was abrasion. Furthermore, higher vehicle speed (80 km/h) along with greater brake pressure (3 bar) promoted the highest friction material mass loss (10.8 g).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.