Two closely related homeobox transcription factors, Pitx1 and Pitx2, have been implicated in patterning of lateral plate mesoderm derivatives: Pitx1 for specification of hindlimb identity and Pitx2 for determination of laterality. We show that, together, Pitx1 and Pitx2 are required for formation of hindlimb buds and, when present in limited doses, for development of proximal (femur) and anterior (tibia and digit 1) hindlimb structures. Although Pitx1 is expressed throughout developing hindlimb buds, Pitx2 is not expressed in limb bud mesenchyme itself, but is coexpressed with Pitx1 in the presumptive hindlimb field before bud growth. Thus, Pitx1 and Pitx2 genes are required for sustained hindlimb bud growth and formation of hindlimbs.
The myogenic program is controlled by different groups of transcription factors acting during muscle development, including bHLH muscle regulatory factors (MRFs), the paired factors Pax3 and Pax7 and the homeobox factors Six1 and Six4. This program is critically dependent on MRFs that target downstream muscle-specific genes. We now report the expression of Pitx2 and Pitx3 transcription factors throughout muscle development. Pitx2 is first expressed in muscle progenitor cells of the dermomyotome and myotome. The onset of myoblast differentiation is concomitant with expression of Pitx3; its expression is maintained in all skeletal muscles while Pitx2 expression decreases thereafter. We have generated Pitx3 mutant mice and this deficiency does not significantly perturb muscle development but it is completely compensated by the maintenance of Pitx2 expression in all skeletal muscles. These experiments suggest that Pitx genes are important for myogenesis and that Pitx2 and Pitx3 may have partly redundant roles.
BackgroundThe Aβ peptide that accumulates in Alzheimer’s disease (AD) is derived from amyloid precursor protein (APP) following proteolysis by β- and γ-secretases. Substantial evidence indicates that alterations in APP trafficking within the secretory and endocytic pathways directly impact the interaction of APP with these secretases and subsequent Aβ production. Various members of the low-density lipoprotein receptor (LDLR) family have been reported to play a role in APP trafficking and processing and are important risk factors in AD. We recently characterized a distinct member of the LDLR family called LDLR-related protein 10 (LRP10) that shuttles between the trans-Golgi Network (TGN), plasma membrane (PM), and endosomes. Here we investigated whether LRP10 participates in APP intracellular trafficking and Aβ production.ResultsIn this report, we provide evidence that LRP10 is a functional APP receptor involved in APP trafficking and processing. LRP10 interacts directly with the ectodomain of APP and colocalizes with APP at the TGN. Increased expression of LRP10 in human neuroblastoma SH-SY5Y cells induces the accumulation of mature APP in the Golgi and reduces its presence at the cell surface and its processing into Aβ, while knockdown of LRP10 expression increases Aβ production. Mutations of key motifs responsible for the recycling of LRP10 to the TGN results in the aberrant redistribution of APP with LRP10 to early endosomes and a concomitant increase in APP β-cleavage into Aβ. Furthermore, expression of LRP10 is significantly lower in the post-mortem brain tissues of AD patients, supporting a possible role for LRP10 in AD.ConclusionsThe present study identified LRP10 as a novel APP sorting receptor that protects APP from amyloidogenic processing, suggesting that a decrease in LRP10 function may contribute to the pathogenesis of Alzheimer’s disease.
Background: DNA microarrays are popular tools for measuring gene expression of biological samples. This ever increasing popularity is ensuring that a large number of microarray studies are conducted, many of which with data publicly available for mining by other investigators. Under most circumstances, validation of differential expression of genes is performed on a gene to gene basis. Thus, it is not possible to generalize validation results to the remaining majority of non-validated genes or to evaluate the overall quality of these studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.