In this paper, we present a high data rate implementation of a digital predistortion (DPD) algorithm on a modern mobile multicore CPU containing an on-chip GPU. The proposed implementation is capable of running in real-time, thanks to the execution of the predistortion stage inside the GPU, and the execution of the learning stage on a separate CPU core. This configuration, combined with the low complexity DPD design, allows for more than 400 Msamples/s sample rates. This is sufficient for satisfying 5G new radio (NR) base station radio transmission specifications in the sub-6 GHz bands, where signal bandwidths up to 100 MHz are specified. The linearization performance is validated with RF measurements on two base station power amplifiers at 3.7 GHz, showing that the 5G NR downlink emission requirements are satisfied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.