Each year, millions of motor vehicle traffic accidents all over the world cause a large number of fatalities, injuries and significant material loss. Automated Driving (AD) has potential to drastically reduce such accidents. In this work, we focus on the technical challenges that arise from AD in urban environments. We present the overall architecture of an AD system and describe in detail the perception and planning modules. The AD system, built on a modified Acura RLX, was demonstrated in a course in GoMentum Station in California. We demonstrated autonomous handling of 4 scenarios: traffic lights, cross-traffic at intersections, construction zones and pedestrians. The AD vehicle displayed safe behavior and performed consistently in repeated demonstrations with slight variations in conditions. Overall, we completed 44 runs, encompassing 110km of automated driving with only 3 cases where the driver intervened the control of the vehicle, mostly due to error in GPS positioning. Our demonstration showed that robust and consistent behavior in urban scenarios is possible, yet more investigation is necessary for full scale rollout on public roads.
This article investigates the effects of visual warning presentation methods on human performance in augmented reality (AR) driving. An experimental user study was conducted in a parking lot where participants drove a test vehicle while braking for any cross traffic with assistance from AR visual warnings presented on a monoscopic and volumetric head-up display (HUD). Results showed that monoscopic displays can be as effective as volumetric displays for human performance in AR braking tasks. The experiment also demonstrated the benefits of conformal graphics, which are tightly integrated into the real world, such as their ability to guide drivers' attention and their positive consequences on driver behavior and performance. These findings suggest that conformal graphics presented via monoscopic HUDs can enhance driver performance by leveraging the effectiveness of monocular depth cues. The proposed approaches and methods can be used and further developed by future researchers and practitioners to better understand driver performance in AR as well as inform usability evaluation of future automotive AR applications.
This paper presents an online smooth-path lanechange control framework. We focus on dense traffic where intervehicle space gaps are narrow, and cooperation with surrounding drivers is essential to achieve the lane-change maneuver. We propose a two-stage control framework that harmonizes Model Predictive Control (MPC) with Generative Adversarial Networks (GAN) by utilizing driving intentions to generate smooth lanechange maneuvers. To improve performance in practice, the system is augmented with an adaptive safety boundary and a Kalman Filter to mitigate sensor noise. Simulation studies are investigated in different levels of traffic density and cooperativeness of other drivers. The simulation results support the effectiveness, driving comfort, and safety of the proposed method.
Current pedestrian collision warning systems use either auditory alarms or visual symbols to inform drivers. These traditional approaches cannot tell the driver where the detected pedestrians are located, which is critical for the driver to respond appropriately. To address this problem, we introduce a new driver interface taking advantage of a volumetric head-up display (HUD). In our experimental user study, sixteen participants drove a test vehicle in a parking lot while braking for crossing pedestrians using different interface designs on the HUD. Our results showed that spatial information provided by conformal graphics on the HUD resulted in not only better driver performance but also smoother braking behavior as compared to the baseline.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.