Background/objectives:The presence of T lymphocytes in human adipose tissue has only recently been demonstrated and relatively little is known of their potential relevance in the development of obesity-related diseases. We aimed to further characterise these cells and in particular to investigate how they interact with modestly increased levels of adiposity typical of common overweight and obesity.Subjects/methods:Subcutaneous adipose tissue and fasting blood samples were obtained from healthy males aged 35–55 years with waist circumferences in lean (<94 cm), overweight (94–102 cm) and obese (>102 cm) categories. Adipose tissue-resident CD4+ and CD8+ T lymphocytes together with macrophages were identified by gene expression and flow cytometry. T lymphocytes were further characterised by their expression of activation markers CD25 and CD69. Adipose tissue inflammation was investigated using gene expression analysis and tissue culture.Results:Participants reflected a range of adiposity from lean to class I obesity. Expression of CD4 (T-helper cells) and CD68 (macrophage), as well as FOXP3 RNA transcripts, was elevated in subcutaneous adipose tissue with increased levels of adiposity (P<0.001, P<0.001 and P=0.018, respectively). Flow cytometry revealed significant correlations between waist circumference and levels of CD25 and CD69 expression per cell on activated adipose tissue-resident CD4+ and CD8+ T lymphocytes (P-values ranging from 0.053 to <0.001). No such relationships were found with blood T lymphocytes. This increased T lymphocyte activation was related to increased expression and secretion of various pro- and anti-inflammatory cytokines from subcutaneous whole adipose tissue explants.Conclusions:This is the first study to demonstrate that even modest levels of overweight/obesity elicit modifications in adipose tissue immune function. Our results underscore the importance of T lymphocytes during adipose tissue expansion, and the presence of potential compensatory mechanisms that may work to counteract adipose tissue inflammation, possibly through an increased number of T-regulatory cells.
Background: Air pollution is frequently proposed as a potential cause of the increased incidence of allergy in industrialised countries. Our objective was to investigate the impact of the major gaseous air pollutants on grass pollen allergens. Methods: Timothy grass pollen was exposed to ozone (O3), nitrogen dioxide (NO2) and sulphur dioxide (SO2) alone or in combination. Allergen contents were analysed by 2-dimensional immunoblot using grass pollen-sensitive patient sera. Results: For O3-treated pollen, immunoblotting showed an acidification of allergens Phl p 1b, Phl p 4, Phl p 5 and Phl p 6 and an IgE recognition decrease in Phl p 1, Phl p 2, Phl p 6 and Phl p 13. NO2 exposure induced a decrease in Phl p 2, Phl p 5b and Phl p 6 recognition, and SO2 treatment induced a decrease in Phl p 2, Phl p 6 and Phl p 13 recognition. Moreover, samples treated with a mix of NO2/O3 or NO2/SO2 showed a higher decrease in allergen content, compared with samples treated with only one pollutant. The O3 acidification was also observed with the NO2/O3 mix. Conclusion: Exposure of pollen to gaseous pollutants induced a decrease in allergen detection in pollen extracts. This decrease could be due to a mechanical loss of allergens from the altered pollen grains and/or post-translational modifications affecting allergen recognition by IgE.
Asthma is a chronic inflammatory disease of the airways characterized by variable airway obstruction and airway hyperresponsiveness (AHR). The T regulatory (Treg) cell subset is critically important for the regulation of immune responses. Adoptive transfer of Treg cells has been shown to be sufficient for the suppression of airway inflammation in experimental allergic asthma. Intervention strategies aimed at expanding the Treg cell population locally in the airways of sensitized individuals are therefore of high interest as a potential therapeutic treatment for allergic airway disease. Here, we aim to test whether long-term suppression of asthma manifestations can be achieved by locally expanding the Treg cell subset via intranasal administration of a TLR-2 agonist. To model therapeutic intervention aimed at expanding the endogenous Treg population in a sensitized host, we challenged OVA-sensitized mice by OVA inhalation with concomitant intranasal instillation of the TLR-2 agonist Pam3Cys, followed by an additional series of OVA challenges. Pam3Cys treatment induced an acute but transient aggravation of asthma manifestations, followed by a reduction or loss of AHR to methacholine, depending on the time between Pam3Cys treatment and OVA challenges. In addition, Pam3Cys-treatment induced significant reductions of eosinophils and increased numbers of Treg cells in the lung infiltrates. Our data show that, despite having adverse acute effects, TLR2 agonist treatment as a therapeutic intervention induces an expansion of the Treg cell population in the lungs and results in long-term protection against manifestation of allergic asthma upon subsequent allergen provocation. Our data indicate that local expansion of Tregs in allergic airway disease is an interesting therapeutic approach that warrants further investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.