Acrylic acid is a value-added chemical used in industry to produce diapers, coatings, paints, and adhesives, among many others. Due to its economic importance, there is currently a need for new and sustainable ways to synthesise it. Recently, the focus has been laid in the use of Escherichia coli to express the full bio-based pathway using 3-hydroxypropionate as an intermediary through three distinct pathways (glycerol, malonyl-CoA, and β-alanine). Hence, the goals of this work were to use COPASI software to assess which of the three pathways has a higher potential for industrial-scale production, from either glucose or glycerol, and identify potential targets to improve the biosynthetic pathways yields. When compared to the available literature, the models developed during this work successfully predict the production of 3-hydroxypropionate, using glycerol as carbon source in the glycerol pathway, and using glucose as a carbon source in the malonyl-CoA and β-alanine pathways. Finally, this work allowed to identify four potential over-expression targets (glycerol-3-phosphate dehydrogenase (G3pD), acetyl-CoA carboxylase (AccC), aspartate aminotransferase (AspAT), and aspartate carboxylase (AspC)) that should, theoretically, result in higher AA yields.
Genome-Scale metabolic models (GEMs) are a relevant tool in systems biology for in silico strain optimisation and drug discovery. An easier way to reconstruct a model is to use available GEMs as templates to create the initial draft, which can be curated up until a simulation-ready model is obtained. This approach is implemented in merlin's BiGG Integration Tool, which reconstructs models from existing GEMs present in the BiGG Models database. This study aims to assess draft models generated using models from BiGG as templates for three distinct organisms, namely, Streptococcus thermophilus, Xylella fastidiosa and Mycobacterium tuberculosis. Several draft models were reconstructed using the BiGG Integration Tool and different templates (all, selected and random). The variability of the models was assessed using the reactions and metabolic functions associated with the model's genes. This analysis showed that, even though the models shared a significant portion of reactions and metabolic functions, models from different organisms are still differentiated. Moreover, there also seems to be variability among the templates used to generate the draft models to a lower extent. This study concluded that the BiGG Integration Tool provides a fast and reliable alternative for draft reconstruction for bacteria.
Genome-scale metabolic models (GEMs) are essential tools for in silico phenotype prediction and strain optimisation. The most straightforward GEMs reconstruction approach uses published models as templates to generate the initial draft, requiring further curation. Such an approach is used by BiGG Integration Tool (BIT), available for merlin users. This tool uses models from BiGG Models database as templates for the draft models. Moreover, BIT allows the selection between different template combinations. The main objective of this study is to assess the draft models generated using this tool and compare them BIT, comparing these to CarveMe models, both of which use the BiGG database, and curated models. For this, three organisms were selected, namely Streptococcus thermophilus, Xylella fastidiosa and Mycobacterium tuberculosis. The models’ variability was assessed using reactions and genes’ metabolic functions. This study concluded that models generated with BIT for each organism were differentiated, despite sharing a significant portion of metabolic functions. Furthermore, the template seems to influence the content of the models, though to a lower extent. When comparing each draft with curated models, BIT had better performances than CarveMe in all metrics. Hence, BIT can be considered a fast and reliable alternative for draft reconstruction for bacteria models.
Xylella fastidiosa is a gram-negative phytopathogenic bacterium that caused a significant economic impact around the world. In the last decade, genome-scale metabolic models have become important systems biology tools for studying the metabolic behaviour of different pathogens and driving the discovery of novel drug targets. In this work, a GSM model of X. fastidiosa subsp. pauca De Donno was developed. The model comprises 1164 reactions, 1379 metabolites, and 508 genes. in silico validation of the metabolic model was achieved through the comparison of simulations with available experimental data. Aerobic metabolism was simulated properly and fastidian gum production rates predicted accurately. The GSM model allowed identifying potential drug targets, using a pipeline based on the model's gene essentially analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.