Pneumococcal surface protein A (PspA) is an important vaccine candidate against pneumococcal infections, capable of inducing protection in different animal models. Based on its structural diversity, it has been suggested that a PspA-based vaccine should contain at least one fragment from each of the two major families (family 1, comprising clades 1 and 2, and family 2, comprising clades 3, 4 and 5) in order to elicit broad protection. This study analysed the recognition of a panel of 35 pneumococcal isolates bearing different PspAs by antisera raised against the N-terminal regions of PspA clades 1 to 5. The antiserum to PspA clade 4 was found to show the broadest cross-reactivity, being able to recognize pneumococcal strains containing PspAs of all clades in both families. The cross-reactivity of antibodies elicited against a PspA hybrid including the N-terminal region of clade 1 fused to a shorter and more divergent fragment (clade-defining region, or CDR) of clade 4 (PspA1–4) was also tested, and revealed a strong recognition of isolates containing clades 1, 4 and 5, and weaker reactions with clades 2 and 3. The analysis of serum reactivity against different PspA regions further revealed that the complete N-terminal region rather than just the CDR should be included in an anti-pneumococcal vaccine. A PspA-based vaccine is thus proposed to be composed of the whole N-terminal region of clades 1 and 4, which could also be expressed as a hybrid protein.
PspA is an important pneumococcal vaccine candidate that is capable of inducing protection in different animal models. Because of its structural diversity, a PspA-based vaccine should contain at least one fragment from each of the two major families (1 and 2) in order to elicit broader protection. In the present work, we have tested the potential of PspA hybrids containing fused portions of family 1 and 2 (PspA1ABC-4B and PspA1ABC-3AB) PspA fragments to induce protection against pneumococci bearing distinct PspA fragments. Sera from mice immunized with these hybrid PspA fragments were able to increase C3 deposition on pneumococci bearing PspA fragments from both families, in contrast with sera made against the PspA family 1 (PspA1ABC) and PspA family 2 (PspA3ABC) fragments, which were effective only within the same family. Although PspA hybrids were able to extend protection against pneumococcal infection with strains bearing diverse PspA fragments, the immunity elicited by family 2 was clade dependent, suggesting that PspA fragments from family 2 clades 3 and 4 should both be included in a comprehensive PspA vaccine. These results indicate that PspA fusion proteins constitute an efficient immunization strategy for future PspA-based antipneumococcal vaccines since they are able to extend protection provided by a protein derived from a single transcript.
Streptococcus pneumoniae is a major cause of disease, especially in developing countries, and cost-effective alternatives to the currently licensed vaccines are needed. We constructed DNA vaccines based on pneumococcal surface protein A (PspA), an antigen shown to induce protection against pneumococcal bacteremia. PspA fragments can be divided into three families, which can be subdivided into six clades, on the basis of PspA amino acid sequence divergence (S. K. Hollingshead, R. Becker, and D. E. Briles, Infect. Immun. 68:5889-5900, 2000). Since most clinical isolates belong to family 1 or family 2, PspA fragments from members of both of these families were analyzed. Vectors encoding the complete N-terminal regions of PspAs elicited significant humoral responses, and cross-reactivity was mainly restricted to the same family. DNA vaccines encoding fusions between PspA fragments from family 1 and family 2 were also constructed and were able to broaden the cross-reactivity, with induction of antibodies that showed reactions with members of both families. At least for the pneumococcal strains tested, the cross-reactivity of antibodies was not reflected in cross-protection. Animals immunized with DNA vaccines expressing the complete N-terminal regions of PspA fragments were protected only against intraperitoneal challenge with a strain expressing PspA from the same clade.
The prokaryotic ubiquitous Toxin-Antitoxin (TA) operons encode a stable toxin and an unstable antitoxin. The most accepted hypothesis of the physiological function of the TA system is the reversible cessation of cellular growth under stress conditions. The major TA family, VapBC is present in the spirochaete Leptospira interrogans. VapBC modules are classified based on the presence of a predicted ribonucleasic PIN domain in the VapC toxin. The expression of the leptospiral VapC in E. coli promotes a strong bacterial growth arrestment, making it difficult to express the recombinant protein. Nevertheless, we showed that long term induction of expression in E. coli enabled the recovery of VapC in inclusion bodies. The recombinant protein was successfully refolded by high hydrostatic pressure, providing a new method to obtain the toxin in a soluble and active form. The structural integrity of the recombinant VapB and VapC proteins was assessed by circular dichroism spectroscopy. Physical interaction between the VapC toxin and the VapB antitoxin was demonstrated in vivo and in vitro by pull down and ligand affinity blotting assays, respectively, thereby indicating the ultimate mechanism by which the activity of the toxin is regulated in bacteria. The predicted model of the leptospiral VapC structure closely matches the Shigella's VapC X-ray structure. In agreement, the ribonuclease activity of the leptospiral VapC was similar to the activity described for Shigella's VapC, as demonstrated by the cleavage of tRNAfMet and by the absence of unspecific activity towards E. coli rRNA. This finding suggests that the cleavage of the initiator transfer RNA may represent a common mechanism to a larger group of bacteria and potentially configures a mechanism of post-transcriptional regulation leading to the inhibition of global translation.
Albumin is the human protein used mainly for therapeutic purposes. Besides the traditionally used plasma, blood from placenta is an alternative source for albumin purification. We describe here an industrial process for purification of albumin from human placenta. The proposed albumin-purification process, for 50 kg of placentas, comprises: (i) extraction of haemolysed blood with saline and solid/liquid separation by basket centrifugation; (ii) selective precipitation of haemoglobin by ethanol/chloroform and precipitate removal by filtration in a press filter; (iii) concentration/diafiltration of the filtrate in a 30 kDa cross-flow ultrafiltration (CFUF) membrane; (iv) thermo-coagulation at 70 degrees C with sodium octanoate/EDTA; (v) treatment with activated charcoal at pH 3; (vi) concentration/diafiltration of the filtrate in a 30 kDa CFUF membrane; (vii) anion-exchange chromatography Q-Sepharose; (viii) hydrophobic-interaction chromatography with phenyl-Sepharose; and (ix) conditioning and pasteurization. The process yields an average of 4.5 g of albumin/kg of placenta with a purity of 97.1% and A(403) of 0.05 (1% protein). The final product passes pyrogen and toxicity tests in vivo and it does not contain polymers or aggregates, even after the accelerated stability test, as judged by gel filtration, as required by the Brazilian Pharmacopoeia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.