Point set visualization is required in lots of visualization techniques. Scatter plots as well as geographic heat-maps are straightforward examples. Data analysts are now well trained to use such visualization techniques. The availability of larger and larger datasets raises the need to make these techniques scale as fast as the data grows. The Big Data Infrastructure offers the possibility to scale horizontally. Designing point set visualization methods that fit into that new paradigm is thus a crucial challenge. In this paper, we present a complete architecture which fully fits into the Big Data paradigm and so enables interactive visualization of heatmaps at ultra-scale. A new distributed algorithm for multi-scale aggregation of point set is given and an adaptive GPU based method for kernel density estimation is proposed. A complete prototype working with Hadoop, HBase, Spark and WebGL has been implemented. We give a benchmark of our solution on a dataset having more than 2 billion points.
The size of available graphs has drastically increased in recent years. The real-time visualization of graphs with millions of edges is a challenge but is necessary to grasp information hidden in huge datasets. This article presents an end-to-end technique to visualize huge graphs using an established Big Data ecosystem and a lightweight client running in a Web browser. For that purpose, levels of abstraction and graph tiles are generated by a batch layer and the interactive visualization is provided using a serving layer and client-side real-time computation of edge bundling and graph splatting. A major challenge is to create techniques that work without moving data to an ad hoc system and that take advantage of the horizontal scalability of these infrastructures. We introduce two novel scalable algorithms that enable to generate a canopy clustering and to aggregate graph edges. These two algorithms are both used to produce levels of abstraction and graph tiles. We prove that our technique guarantee a quality of visualization by controlling both the necessary bandwidth required for data transfer and the quality of the produced visualization. Furthermore, we demonstrate the usability of our technique by providing a complete prototype. We present benchmarks on graphs with millions of elements and we compare our results to those obtained by state of the art techniques. Our results show that new Big Data technologies can be incorporated into visualization pipeline to push out the size limits of graphs one can visually analyze.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.