The objective of this study was to automate the acquisition of water travel time, as well as the computation of hydraulic conductivity of saturated soil by the falling head method, using water sensors and the Arduino platform. To automate the measurement of travel time, the Arduino Uno board was used, and two water sensors were installed at the initial (h0) and final (h1) heights of the water inside the core. When the water flows across the soil and the water level passes the bottom part of the initial sensor (h0), the time recording starts; it ends when the water is absent from the final height of the second sensor (h1). The equation for calculating the hydraulic conductivity was inserted into the algorithm so the calculation was automatic. Undisturbed soil samples were taken in a long-term no-tillage area. There were no significant differences for the time and hydraulic conductivity means between the permeameters. The coefficient of the residual mass index showed an overestimation of the time variable; thus, the automated permeameter improves the precision of time recording and saturated hydraulic conductivity estimated by the falling head method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.