Current cyanide antidotes are administered by IV infusion which is suboptimal for mass casualties. Therefore, in a cyanide disaster intramuscular (IM) injectable antidotes would be more appropriate. We report the discovery of the highly water-soluble sulfanegen triethanolamine as a promising lead for development as an IM injectable cyanide antidote.
SUMMARY Context Cyanide poisoning is a major contributor to death in smoke inhalation victims and accidental exposure to cyanide occurs in a variety of industries. Moreover, cyanide has the potential to be used by terrorists, particularly in a closed space such as an airport or train station. Current therapies for cyanide poisoning must be given by intravenous administration, limiting their use in treating mass casualties. Objective We are developing two new cyanide antidotes—cobinamide, a vitamin B12 analog, and sulfanegen, a 3-mercaptopyruvate prodrug. Both drugs can be given by intramuscular administration, and therefore could be used to treat a large number of people quickly. We now asked if the two drugs would have an augmented effect when combined. Materials and Methods We used a non-lethal and two different lethal models of cyanide poisoning in mice. The non-lethal model assesses neurologic recovery by quantitatively evaluating the innate righting reflex time of a mouse. The two lethal models are a cyanide injection and a cyanide inhalation model. Results We found that the two drugs are at least additive when used together in both the non-lethal and lethal models: at doses where all animals died with either drug alone, the combination yielded 80 and 40% survival in the injection and inhalation models, respectively. Similarly, drug doses that yielded 40% survival with either drug alone yielded 80 and 100% survival in the injection and inhalatiion models, respectively. As part of the inhalation model, we developed a new paradigm in which animals are exposed to cyanide gas, injected intramuscularly with antidote, and then re-exposed to cyanide gas. This simulates cyanide exposure of a large number of people in a closed space, because people would remain exposed to cyanide, even after receiving an antidote. Conclusion The combination of cobinamide and sulfanegen shows great promise as a new approach to treating cyanide poisoning.
Accidental or intentional cyanide poisoning is a serious health risk. The current suite of FDA approved antidotes, including hydroxocobalamin, sodium nitrite, and sodium thiosulfate is effective, but each antidote has specific major limitations, such as large effective dosage or delayed onset of action. Therefore, next generation cyanide antidotes are being investigated to mitigate these limitations. One such antidote, 3-mercaptopyruvate (3-MP), detoxifies cyanide by acting as a sulfur donor to convert cyanide into thiocyanate, a relatively nontoxic cyanide metabolite. An analytical method capable of detecting 3-MP in biological fluids is essential for the development of 3-MP as a potential antidote. Therefore, a high performance liquid chromatography tandem mass spectrometry (HPLC-MS-MS) method was established to analyze 3-MP from rabbit plasma. Sample preparation consisted of spiking the plasma with an internal standard (13C3-3-MP), precipitation of plasma proteins, and reaction with monobromobimane to inhibit the characteristic dimerization of 3-MP. The method produced a limit of detection of 0.1 µM, a linear dynamic range of 0.5–100 µM, along with excellent linearity (R2 ≥ 0.999), accuracy (±9% of the nominal concentration) and precision (<7% relative standard deviation). The optimized HPLC-MS-MS method was capable of detecting 3-MP in rabbits that were administered sulfanegen, a prodrug of 3-MP, following cyanide exposure. Considering the excellent performance of this method, it will be utilized for further investigations of this promising cyanide antidote.
The current suite of Food and Drug Administration (FDA) approved antidotes (i.e., sodium nitrite, sodium thiosulfate, and hydroxocobalamin) are effective for treating cyanide poisoning, but individually, each antidote has major limitations (e.g., large effective dosage or delayed onset of action). To mitigate these limitations, next-generation cyanide antidotes are being investigated, including 3-mercaptopyruvate (3-MP) and cobinamide (Cbi). Analytical methods capable of detecting these therapeutics individually and simultaneously (for combination therapy) are essential for the development of 3-MP and Cbi as potential cyanide antidotes. Therefore, a liquid chromatography-tandem mass-spectrometry method for the simultaneous analysis of 3-MP and Cbi was developed. Sample preparation of 3-MP consisted of spiking plasma with an internal standard ((13)C3-3-MP), precipitation of plasma proteins, and derivatizing 3-MP with monobromobimane to produce 3-mercaptopyruvate-bimane. Preparation of Cbi involved denaturing plasma proteins with simultaneous addition of excess cyanide to convert each Cbi species to dicyanocobinamide (Cbi(CN)2). The limits of detection for 3-MP and Cbi were 0.5μM and 0.2μM, respectively. The linear ranges were 2-500μM for 3-MP and 0.5-50μM for Cbi. The accuracy and precision for 3-MP were 100±9% and <8.3% relative standard deviation (RSD), respectively. For Cbi(CN)2, the accuracy was 100±13% and the precision was <9.5% RSD. The method presented here was used to determine 3-MP and Cbi from treated animals and may ultimately facilitate FDA approval of these antidotes for treatment of cyanide poisoning.
Summary: New compounds (3 and 4) possesing the 2,3-dihydro-1,4-dioxino[2,3-b]pyridine group were synthesized and tested as calcium antagonist agents. Both of them showed moderate anticalcium activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.