Synthesis of structural, petrological and geochronological data for the Maures–Tanneron Massif and its integration in the framework of adjacent massifs (i.e. Sardinia and Corsica) has allowed us to propose a new model of evolution for the southern Variscan belt. After Siluro-Devonian subduction associated with high-pressure–low-temperature (HP/LT) metamorphism M0 (c. 10–15 °C km−1) and subsequent Carboniferous nappes stacking, the belt underwent strong reworking related to back-thrusting. Nappes stacking and back-thrusting were associated with typical Barrovian metamorphism M1 (c. 20–30 °C km−1) starting at 360 Ma that progressively evolved to higher temperature metamorphisms M2 (c. 40–60 °C km−1) and M3 (c. 60–80 °C km−1) during 330–300 Ma in the internal part of the belt. Progressive increase of the thermal gradient is interpreted as a consequence of gravitational instabilities triggered in the partially molten orogenic root. Continuous compressive forces applied to the belt allowed vertical extrusion of the orogenic root in fold-dome structures. The mass transfer is accommodated by orogen-parallel transpressive shearing synchronous with M3 during Late Carboniferous time. The orogenic wedge is characterized by two main tectono-metamorphic units decoupled by a major shear belt: an Internal Zone with migmatites and syntectonic granitoids, where HP relicts have been exhumed, and an External Zone that escaped the late HT event and preserved precious structures.
The Maures-Tanneron Massif (MTM), together with Corsica and Sardinia, represent the Southeastern branch of the huge European Variscan belt. A continuous evolution from continental collision to exhumation is described from ca. 350 Ma to ca. 320 Ma, based on an extended compilation of available geological and geochronogical data. This geological compilation is complemented with thermo-mechanical modelling that tests the conditions under which deep-seated HP units can melt and exhume massively during continued convergence. We simulate in two-dimensions the development of gravitational instabilities in a partially melting crust, depending on rheological layering and heat sources, and accounting for temperature dependent elasto-visco-plastic rheologies. In order to reproduce PT exhumation patterns in the MTM, over the appropriate time-scale (>20 My) and spatial extent (>100 km), a best fit was obtained with a convergence rate of 0.5 cm/yr and moderate diffusive surface processes. The contribution of radiogenic heating in the pre-stacked felsic crustal units is crucial. A lateral alternation with mafic units is also required in order to prevent lateral spreading of the orogen. A low viscosity partially molten crust (10² Pa.s, thus rather felsic) accompanies crustal exhumation in a decoupled mode from the deeper mantle. A shallow asthenosphere below the orogen (LAB at ~70 km depth, eg. shallow slab break-off) produces too warm and sudden exhumation as opposed to a competent mantle lithosphere (120 km depth LAB) that restrains it. The MTM witnesses the typical competition between far-field plate convergence and internal body forces, and our study pleads for a progressive evolution of transpression towards perpendicular extension from ca. 320 Ma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.