We describe and evaluate a novel optimization-based off-line path planning algorithm for mobile robots based on the Counterexample-Guided Inductive Optimization (CEGIO) technique. CEGIO iteratively employs counterexamples generated from Boolean Satisfiability (SAT) and Satisfiability Modulo Theories (SMT) solvers, in order to guide the optimization process and to ensure global optimization. This paper marks the first application of those solvers for planning mobile robot path. In particular, CEGIO has been successfully applied to obtain optimal two-dimensional paths for autonomous mobile robots using off-the-shelf SAT and SMT solvers.
Neste artigo, consideramos as generalizações dos problemas k-median e k-center, conhecidas, respectivamente, por leasing k-median (LKM) e leasing k-center (LKC). Apresentamos formulações de programação linear inteira e uma heurı́stica baseada na meta-heurı́stica BRKGA. Comparamos as soluções geradas pela heurı́stica com as soluções geradas pelo resolvedor GUROBI aplicado às formulações em programação linear, estabelecendo um prazo de 10 minutos de execução para ambos. Para as instâncias pequenas testadas, os custos das soluções heurı́sticas foram próximos aos custos ótimos (GAP médio ≤ 8%). Para instâncias maiores testadas a heurı́stica gerou soluções superiores às do resolvedor, em pelo menos metade dos testes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.