Although the neural systems that underlie spoken language are well-known, how they adapt to evolving social cues during natural conversations remains an unanswered question. In this work we investigate the neural correlates of face-to-face conversations between two individuals using functional near infrared spectroscopy (fNIRS) and acoustical analyses of concurrent audio recordings. Nineteen pairs of healthy adults engaged in live discussions on two controversial topics where their opinions were either in agreement or disagreement. Participants were matched according to their a priori opinions on these topics as assessed by questionnaire. Acoustic measures of the recorded speech including the fundamental frequency range, median fundamental frequency, syllable rate, and acoustic energy were elevated during disagreement relative to agreement. Consistent with both the a priori opinion ratings and the acoustic findings, neural activity associated with long-range functional networks, rather than the canonical language areas, was also differentiated by the two conditions. Specifically, the frontoparietal system including bilateral dorsolateral prefrontal cortex, left supramarginal gyrus, angular gyrus, and superior temporal gyrus showed increased activity while talking during disagreement. In contrast, talking during agreement was characterized by increased activity in a social and attention network including right supramarginal gyrus, bilateral frontal eye-fields, and left frontopolar regions. Further, these social and visual attention networks were more synchronous across brains during agreement than disagreement. Rather than localized modulation of the canonical language system, these findings are most consistent with a model of distributed and adaptive language-related processes including cross-brain neural coupling that serves dynamic verbal exchanges.
In online experimentation, trigger-dilute analysis is an approach to obtain more precise estimates of intent-to-treat (ITT) effects when the intervention is only exposed, or "triggered", for a small subset of the population. Trigger-dilute analysis cannot be used for estimation when triggering is only partially observed. In this paper, we propose an unbiased ITT estimator with reduced variance for cases where triggering status is only observed in the treatment group. Our method is based on the efficiency augmentation idea of CUPED and draws upon identification frameworks from the principal stratification and instrumental variables literature. The unbiasedness of our estimation approach relies on a testable assumption that an augmentation term used for covariate adjustment equals zero in expectation. When this augmentation term fails a mean-zero test, we show how our estimator can incorporate in-experiment observations to reduce the augmentation's bias, by sacrificing the amount of variance reduced. This provides an explicit knob to trade off bias with variance. We demonstrate through simulations that our estimator can remain unbiased and achieve precision improvements as good as if triggering status were fully observed, and in some cases outperforms trigger-dilute analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.