Hemorrhagic cystitis (HC) is a common side effect of cyclophosphamide therapy, which deserves new therapeutic strategies, such as those based on natural products. The ethanol extract of the inner bark of Caesalpinia pyramidalis (Tul.) (EECp) possesses anti-inflammatory, antinociceptive, and antioxidant activities as previously showed by our group. We have investigated the effect of EECp on the cyclophosphamide-induced HC. Cystitis was induced in male Wistar rats by the injection of cyclophosphamide. These animals were pretreated with EECp (100–400 mg/kg), vehicle, or mesna. Myeloperoxidase activity and malondialdehyde formation were measured in urinary bladder and other tissues. Bladder edema and histopathological alterations and serum nitric oxide metabolites concentration NOx
− were also evaluated. Treatment with EECp (100–400 mg/kg) or mesna impaired the increase of myeloperoxidase activity in urinary bladder and the serum NOx
− induced by cyclophosphamide but did not reduce edema in this tissue, as did mesna. Total histological score was reduced by EECp (100 mg/kg). Lung myeloperoxidase activity, which was increased by cyclophosphamide, was decreased significantly by EECp (400 mg/kg). EECp also diminished the malondialdehyde formation in bladder, lung, and spleen, although these parameters were not affected by cyclophosphamide. These results indicate that EECp reduced urinary bladder damage during cyclophosphamide-induced HC in rats.
The human papillomavirus (HPV) represents the most prevalent sexually transmitted infectious agent worldwide. HPV penetrates the epithelium through microlesions and establishes an infectious focus that can lead to the development of cervical cancer. Prophylactic HPV vaccines are available, but do not affect already‐established infections. Using in silico prediction tools is a promising strategy for identifying and selecting vaccine candidate T cell epitopes. An advantage of this strategy is that epitopes can be selected according to the degree of conservation within a group of antigenic proteins. This makes achieving comprehensive genotypic coverage possible with a small set of epitopes. Therefore, this paper revises the general characteristics of HPV biology and the current knowledge on developing therapeutic peptide vaccines against HPV‐related infections and cervical cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.