Purpose The impacts of humeral offset and stem design after reverse shoulder arthroplasty (RSA) have not been well-studied, particularly with regard to newer stems which have a lower humeral inclination. The purpose of this study was to analyze the effect of different humeral stem designs on range of motion and humeral position following RSA. Methods Using a three-dimensional computer model of RSA, a traditional inlay Grammont stem was compared to a short curved onlay stem with different inclinations (155°, 145°, 135°) and offset (lateralised vs medialised). Humeral offset, the acromiohumeral distance (AHD), and range of motion were evaluated for each configuration. Results Altering stem design led to a nearly 7-mm change in humeral offset and 4 mm in the AHD. Different inclinations of the onlay stems had little influence on humeral offset and larger influence on decreasing the AHD. There was a 10°decrease in abduction and a 5°increase in adduction between an inlay Grammont design and an onlay design with the same inclination. Compared to the 155°mod-el, the 135°model improved adduction by 28°, extension by 24°and external rotation of the elbow at the side by 15°, but led to a decrease in abduction of 9°. When the tray was placed medially, on the 145°model, a 9°loss of abduction was observed. Conclusions With varus inclination prostheses (135°and 145°), elevation remains unchanged, abduction slightly decreases, but a dramatic improvement in adduction, extension and external rotation with the elbow at the side are observed.
Reversed shoulder prostheses are increasingly being used for the treatment of glenohumeral arthropathy associated with a deficient rotator cuff. These non-anatomical implants attempt to balance the joint forces by means of a semi-constrained articular surface and a medialised centre of rotation. A finite element model was used to compare a reversed prosthesis with an anatomical implant. Active abduction was simulated from 0 degrees to 150 degrees of elevation. With the anatomical prosthesis, the joint force almost reached the equivalence of body weight. The joint force was half this for the reversed prosthesis. The direction of force was much more vertically aligned for the reverse prosthesis, in the first 90 degrees of abduction. With the reversed prosthesis, abduction was possible without rotator cuff muscles and required 20% less deltoid force to achieve it. This force analysis confirms the potential mechanical advantage of reversed prostheses when rotator cuff muscles are deficient.
Background. Supraspinatus deficiency is the most frequent and important problem associated to rotator cuff pathologies. It reduces shoulder stability and can lead to osteoarthritis. The goal of this study was to develop a numerical model of the shoulder to analyse the biomechanical consequences of this pathology.Methods. A 3D finite element model of the shoulder was developed from a normal cadaver specimen. It included the scapula, the humerus and the major abduction muscles. Instead of the usual ball-socket assumption, which prevents the natural translation of the humerus, shoulder stability was actively achieved by muscles. A feedback algorithm was developed to synchronise muscle forces during abduction. The numerical algorithm was validated against an algebraic model, and the calculated muscle moment arms were compared to the literature. Two cases were considered: a normal shoulder and the same one without supraspinatus.Findings. For the normal shoulder, the model predicted the initial upward migration of the humeral head. The maximal humerus translation occurred at 30°of abduction and was 0.75 mm above its ideal centered position. Without supraspinatus, it was 1.6 times higher and the contact point in the glenoid fossa was more eccentric. For the normal shoulder, the maximal glenohumeral force was 81% of the body weight, at 82°of abduction. Without supraspinatus, it increased by 8%, while the increase of muscle forces was 30%.Interpretation. Supraspinatus deficiency increased the upward migration of the humerus, the eccentric loading, and the joint and muscle forces, which may cause a limitation of active abduction and degenerative glenohumeral changes (osteoarthritis and the rotator cuff tear).
It is a clinical challenge to obtain a sufficient orthopaedic implant fixation in weak osteoporotic bone. When the primary implant fixation is poor, micromotions occur at the bone-implant interface, activating osteoclasts, which leads to implant loosening. Bisphosphonate can be used to prevent the osteoclastic response, but when administered systemically its bioavailability is low and the time it takes for the drug to reach the periprosthetic bone may be a limiting factor. Recent data has shown that delivering bisphosphonate locally from the implant surface could be an interesting solution. Local bisphosphonate delivery increased periprosthetic bone density, which leads to a stronger implant fixation, as demonstrated in rats by the increased implant pullout force. The aim of the present study was to verify the positive effect on periprosthetic bone remodelling of local bisphosphonate delivery in an osteoporotic sheep model. Four implants coated with zoledronate and two control implants were inserted in the femoral condyle of ovariectomized sheep for 4 weeks. The bone at the implant surface was 50% higher in the zoledronate-group compared to control group. This effect was significant up to a distance of 400μm from the implant surface. The presented results are similar to what was observed in the osteoporotic rat model, which suggest that the concept of releasing zoledronate locally from the implant to increase the implant fixation is not species specific. The results of this trial study support the claim that local zoledronate could increase the fixation of an implant in weak bone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.